Loading…

Self-inhibiting heat flux

Heat transfer through weakly magnetized diffuse astrophysical plasmas excites whistlers. This leads to electron whistler resonant scattering, a reduction of the electron mean free path, and heat flux inhibition. However, only whistlers propagating at a finite angle to the magnetic field (off-axis) c...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 1998-11, Vol.301 (1), p.49-58
Main Authors: Pistinner, S. L., Eichler, D.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heat transfer through weakly magnetized diffuse astrophysical plasmas excites whistlers. This leads to electron whistler resonant scattering, a reduction of the electron mean free path, and heat flux inhibition. However, only whistlers propagating at a finite angle to the magnetic field (off-axis) can scatter the heat flux carrying electrons. Thus the level of heat flux inhibition along the magnetic field lines depends on the presence of off-axis whistlers. We obtain a solution of the Boltzmann equation with the whistler wave equation and show that if εthβe ≫ 10−4, where εth is the thermal collisional Knudsen number and βe is the ratio of the electron pressure to the magnetic energy density, then scattering of heat flux carrying electrons by off-axis whistlers, which are shown to propagate at about 65°, is efficient enough to lead to heat flux inhibition along field lines. The inhibition so obtained is proportional to (εthβe)−1.
ISSN:0035-8711
1365-2966
DOI:10.1046/j.1365-8711.1998.01770.x