Loading…
Connectomic comparison of mouse and human cortex
The human cerebral cortex houses 1000 times more neurons than that of the cerebral cortex of a mouse, but the possible differences in synaptic circuits between these species are still poorly understood. We used three-dimensional electron microscopy of mouse, macaque, and human cortical samples to st...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2022-07, Vol.377 (6602), p.eabo0924-eabo0924 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-b82bc7ed4dbb9b7175e6efdf22c63df7f25863c7fa2ed21de6dcb2cdf64839ae3 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-b82bc7ed4dbb9b7175e6efdf22c63df7f25863c7fa2ed21de6dcb2cdf64839ae3 |
container_end_page | eabo0924 |
container_issue | 6602 |
container_start_page | eabo0924 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 377 |
creator | Loomba, Sahil Straehle, Jakob Gangadharan, Vijayan Heike, Natalie Khalifa, Abdelrahman Motta, Alessandro Ju, Niansheng Sievers, Meike Gempt, Jens Meyer, Hanno S. Helmstaedter, Moritz |
description | The human cerebral cortex houses 1000 times more neurons than that of the cerebral cortex of a mouse, but the possible differences in synaptic circuits between these species are still poorly understood. We used three-dimensional electron microscopy of mouse, macaque, and human cortical samples to study their cell type composition and synaptic circuit architecture. The 2.5-fold increase in interneurons in humans compared with mice was compensated by a change in axonal connection probabilities and therefore did not yield a commensurate increase in inhibitory-versus-excitatory synaptic input balance on human pyramidal cells. Rather, increased inhibition created an expanded interneuron-to-interneuron network, driven by an expansion of interneuron-targeting interneuron types and an increase in their synaptic selectivity for interneuron innervation. These constitute key neuronal network alterations in the human cortex.
Over the past few decades, the mouse has become a model organism for brain research. Because of the close evolutionary similarity of ion channels, synaptic receptors, and other key molecular constituents of the brain to that of humans, corresponding similarity has been assumed for cortical neuronal circuits. However, comparative synaptic-resolution connectomic studies are required to determine the degree to which circuit structure has evolved between species. Using three-dimensional electron microscopy, Loomba
et al
. compared mouse and human/macaque cortex synaptic connectivity. Although human cells are much larger compared with mouse neurons and are more numerous, on average, they do not receive more synapses. And, even though there are three times more interneurons in the human cortex than in the mouse, the excitation-to-inhibition ratio is similar between the species. —PRS
Three-dimensional electron microscopy of mouse, macaque, and human brain samples elucidates cell type composition and synaptic circuit architecture. |
doi_str_mv | 10.1126/science.abo0924 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2681036340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681036340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-b82bc7ed4dbb9b7175e6efdf22c63df7f25863c7fa2ed21de6dcb2cdf64839ae3</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EEqUws0ZiYUnrV5x4RBEUpEosMFt-XItUjV3sRIJ_j6t2YrrD-XR07ofQPcErQqhYZztAsLDSJmJJ-QVaECybWlLMLtECYybqDrfNNbrJeYdxySRbINzHEMBOcRxsZeN40GnIMVTRV2OcM1Q6uOprHnUoaZrg5xZdeb3PcHe-S_T58vzRv9bb981b_7StLcdyqk1HjW3BcWeMNC1pGxDgnafUCuZ862nTCWZbryk4ShwIZw21zgveMamBLdHjqfeQ4vcMeVLjkC3s9zpAGaao6Ej5iXFc0Id_6C7OKZR1R0pQTnkjCrU-UTbFnBN4dUjDqNOvIlgdDaqzQXU2yP4Au41mzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686242456</pqid></control><display><type>article</type><title>Connectomic comparison of mouse and human cortex</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><creator>Loomba, Sahil ; Straehle, Jakob ; Gangadharan, Vijayan ; Heike, Natalie ; Khalifa, Abdelrahman ; Motta, Alessandro ; Ju, Niansheng ; Sievers, Meike ; Gempt, Jens ; Meyer, Hanno S. ; Helmstaedter, Moritz</creator><creatorcontrib>Loomba, Sahil ; Straehle, Jakob ; Gangadharan, Vijayan ; Heike, Natalie ; Khalifa, Abdelrahman ; Motta, Alessandro ; Ju, Niansheng ; Sievers, Meike ; Gempt, Jens ; Meyer, Hanno S. ; Helmstaedter, Moritz</creatorcontrib><description>The human cerebral cortex houses 1000 times more neurons than that of the cerebral cortex of a mouse, but the possible differences in synaptic circuits between these species are still poorly understood. We used three-dimensional electron microscopy of mouse, macaque, and human cortical samples to study their cell type composition and synaptic circuit architecture. The 2.5-fold increase in interneurons in humans compared with mice was compensated by a change in axonal connection probabilities and therefore did not yield a commensurate increase in inhibitory-versus-excitatory synaptic input balance on human pyramidal cells. Rather, increased inhibition created an expanded interneuron-to-interneuron network, driven by an expansion of interneuron-targeting interneuron types and an increase in their synaptic selectivity for interneuron innervation. These constitute key neuronal network alterations in the human cortex.
Over the past few decades, the mouse has become a model organism for brain research. Because of the close evolutionary similarity of ion channels, synaptic receptors, and other key molecular constituents of the brain to that of humans, corresponding similarity has been assumed for cortical neuronal circuits. However, comparative synaptic-resolution connectomic studies are required to determine the degree to which circuit structure has evolved between species. Using three-dimensional electron microscopy, Loomba
et al
. compared mouse and human/macaque cortex synaptic connectivity. Although human cells are much larger compared with mouse neurons and are more numerous, on average, they do not receive more synapses. And, even though there are three times more interneurons in the human cortex than in the mouse, the excitation-to-inhibition ratio is similar between the species. —PRS
Three-dimensional electron microscopy of mouse, macaque, and human brain samples elucidates cell type composition and synaptic circuit architecture.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abo0924</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Biopsy ; Brain ; Brain research ; Cerebral cortex ; Circuits ; Configurations ; Cortex (frontal) ; Cortex (parietal) ; Data acquisition ; Divergence ; Electron microscopy ; Epilepsy ; Evolution ; Homology ; Human tissues ; Innervation ; Interneurons ; Introduced species ; Ion channels ; Mental disorders ; Microscopy ; Nervous system ; Networks ; Neural networks ; Neurons ; Neurosurgery ; Pyramidal cells ; Similarity ; Species ; Substantia grisea ; Surgery ; Synapses ; Temporal lobe ; Thickening ; Transcriptomics ; Tumors</subject><ispartof>Science (American Association for the Advancement of Science), 2022-07, Vol.377 (6602), p.eabo0924-eabo0924</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-b82bc7ed4dbb9b7175e6efdf22c63df7f25863c7fa2ed21de6dcb2cdf64839ae3</citedby><cites>FETCH-LOGICAL-c409t-b82bc7ed4dbb9b7175e6efdf22c63df7f25863c7fa2ed21de6dcb2cdf64839ae3</cites><orcidid>0000-0002-0352-2977 ; 0000-0003-3063-8972 ; 0000-0002-9602-6066 ; 0000-0002-4576-1239 ; 0000-0001-7973-0767 ; 0000-0002-0737-7746 ; 0000-0002-2385-045X ; 0000-0003-4123-4690 ; 0000-0002-8547-4816 ; 0000-0002-5152-1610 ; 0000-0002-8004-6812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids></links><search><creatorcontrib>Loomba, Sahil</creatorcontrib><creatorcontrib>Straehle, Jakob</creatorcontrib><creatorcontrib>Gangadharan, Vijayan</creatorcontrib><creatorcontrib>Heike, Natalie</creatorcontrib><creatorcontrib>Khalifa, Abdelrahman</creatorcontrib><creatorcontrib>Motta, Alessandro</creatorcontrib><creatorcontrib>Ju, Niansheng</creatorcontrib><creatorcontrib>Sievers, Meike</creatorcontrib><creatorcontrib>Gempt, Jens</creatorcontrib><creatorcontrib>Meyer, Hanno S.</creatorcontrib><creatorcontrib>Helmstaedter, Moritz</creatorcontrib><title>Connectomic comparison of mouse and human cortex</title><title>Science (American Association for the Advancement of Science)</title><description>The human cerebral cortex houses 1000 times more neurons than that of the cerebral cortex of a mouse, but the possible differences in synaptic circuits between these species are still poorly understood. We used three-dimensional electron microscopy of mouse, macaque, and human cortical samples to study their cell type composition and synaptic circuit architecture. The 2.5-fold increase in interneurons in humans compared with mice was compensated by a change in axonal connection probabilities and therefore did not yield a commensurate increase in inhibitory-versus-excitatory synaptic input balance on human pyramidal cells. Rather, increased inhibition created an expanded interneuron-to-interneuron network, driven by an expansion of interneuron-targeting interneuron types and an increase in their synaptic selectivity for interneuron innervation. These constitute key neuronal network alterations in the human cortex.
Over the past few decades, the mouse has become a model organism for brain research. Because of the close evolutionary similarity of ion channels, synaptic receptors, and other key molecular constituents of the brain to that of humans, corresponding similarity has been assumed for cortical neuronal circuits. However, comparative synaptic-resolution connectomic studies are required to determine the degree to which circuit structure has evolved between species. Using three-dimensional electron microscopy, Loomba
et al
. compared mouse and human/macaque cortex synaptic connectivity. Although human cells are much larger compared with mouse neurons and are more numerous, on average, they do not receive more synapses. And, even though there are three times more interneurons in the human cortex than in the mouse, the excitation-to-inhibition ratio is similar between the species. —PRS
Three-dimensional electron microscopy of mouse, macaque, and human brain samples elucidates cell type composition and synaptic circuit architecture.</description><subject>Biopsy</subject><subject>Brain</subject><subject>Brain research</subject><subject>Cerebral cortex</subject><subject>Circuits</subject><subject>Configurations</subject><subject>Cortex (frontal)</subject><subject>Cortex (parietal)</subject><subject>Data acquisition</subject><subject>Divergence</subject><subject>Electron microscopy</subject><subject>Epilepsy</subject><subject>Evolution</subject><subject>Homology</subject><subject>Human tissues</subject><subject>Innervation</subject><subject>Interneurons</subject><subject>Introduced species</subject><subject>Ion channels</subject><subject>Mental disorders</subject><subject>Microscopy</subject><subject>Nervous system</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neurosurgery</subject><subject>Pyramidal cells</subject><subject>Similarity</subject><subject>Species</subject><subject>Substantia grisea</subject><subject>Surgery</subject><subject>Synapses</subject><subject>Temporal lobe</subject><subject>Thickening</subject><subject>Transcriptomics</subject><subject>Tumors</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAUhS0EEqUws0ZiYUnrV5x4RBEUpEosMFt-XItUjV3sRIJ_j6t2YrrD-XR07ofQPcErQqhYZztAsLDSJmJJ-QVaECybWlLMLtECYybqDrfNNbrJeYdxySRbINzHEMBOcRxsZeN40GnIMVTRV2OcM1Q6uOprHnUoaZrg5xZdeb3PcHe-S_T58vzRv9bb981b_7StLcdyqk1HjW3BcWeMNC1pGxDgnafUCuZ862nTCWZbryk4ShwIZw21zgveMamBLdHjqfeQ4vcMeVLjkC3s9zpAGaao6Ej5iXFc0Id_6C7OKZR1R0pQTnkjCrU-UTbFnBN4dUjDqNOvIlgdDaqzQXU2yP4Au41mzg</recordid><startdate>20220708</startdate><enddate>20220708</enddate><creator>Loomba, Sahil</creator><creator>Straehle, Jakob</creator><creator>Gangadharan, Vijayan</creator><creator>Heike, Natalie</creator><creator>Khalifa, Abdelrahman</creator><creator>Motta, Alessandro</creator><creator>Ju, Niansheng</creator><creator>Sievers, Meike</creator><creator>Gempt, Jens</creator><creator>Meyer, Hanno S.</creator><creator>Helmstaedter, Moritz</creator><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0352-2977</orcidid><orcidid>https://orcid.org/0000-0003-3063-8972</orcidid><orcidid>https://orcid.org/0000-0002-9602-6066</orcidid><orcidid>https://orcid.org/0000-0002-4576-1239</orcidid><orcidid>https://orcid.org/0000-0001-7973-0767</orcidid><orcidid>https://orcid.org/0000-0002-0737-7746</orcidid><orcidid>https://orcid.org/0000-0002-2385-045X</orcidid><orcidid>https://orcid.org/0000-0003-4123-4690</orcidid><orcidid>https://orcid.org/0000-0002-8547-4816</orcidid><orcidid>https://orcid.org/0000-0002-5152-1610</orcidid><orcidid>https://orcid.org/0000-0002-8004-6812</orcidid></search><sort><creationdate>20220708</creationdate><title>Connectomic comparison of mouse and human cortex</title><author>Loomba, Sahil ; Straehle, Jakob ; Gangadharan, Vijayan ; Heike, Natalie ; Khalifa, Abdelrahman ; Motta, Alessandro ; Ju, Niansheng ; Sievers, Meike ; Gempt, Jens ; Meyer, Hanno S. ; Helmstaedter, Moritz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-b82bc7ed4dbb9b7175e6efdf22c63df7f25863c7fa2ed21de6dcb2cdf64839ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biopsy</topic><topic>Brain</topic><topic>Brain research</topic><topic>Cerebral cortex</topic><topic>Circuits</topic><topic>Configurations</topic><topic>Cortex (frontal)</topic><topic>Cortex (parietal)</topic><topic>Data acquisition</topic><topic>Divergence</topic><topic>Electron microscopy</topic><topic>Epilepsy</topic><topic>Evolution</topic><topic>Homology</topic><topic>Human tissues</topic><topic>Innervation</topic><topic>Interneurons</topic><topic>Introduced species</topic><topic>Ion channels</topic><topic>Mental disorders</topic><topic>Microscopy</topic><topic>Nervous system</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neurosurgery</topic><topic>Pyramidal cells</topic><topic>Similarity</topic><topic>Species</topic><topic>Substantia grisea</topic><topic>Surgery</topic><topic>Synapses</topic><topic>Temporal lobe</topic><topic>Thickening</topic><topic>Transcriptomics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loomba, Sahil</creatorcontrib><creatorcontrib>Straehle, Jakob</creatorcontrib><creatorcontrib>Gangadharan, Vijayan</creatorcontrib><creatorcontrib>Heike, Natalie</creatorcontrib><creatorcontrib>Khalifa, Abdelrahman</creatorcontrib><creatorcontrib>Motta, Alessandro</creatorcontrib><creatorcontrib>Ju, Niansheng</creatorcontrib><creatorcontrib>Sievers, Meike</creatorcontrib><creatorcontrib>Gempt, Jens</creatorcontrib><creatorcontrib>Meyer, Hanno S.</creatorcontrib><creatorcontrib>Helmstaedter, Moritz</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loomba, Sahil</au><au>Straehle, Jakob</au><au>Gangadharan, Vijayan</au><au>Heike, Natalie</au><au>Khalifa, Abdelrahman</au><au>Motta, Alessandro</au><au>Ju, Niansheng</au><au>Sievers, Meike</au><au>Gempt, Jens</au><au>Meyer, Hanno S.</au><au>Helmstaedter, Moritz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connectomic comparison of mouse and human cortex</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2022-07-08</date><risdate>2022</risdate><volume>377</volume><issue>6602</issue><spage>eabo0924</spage><epage>eabo0924</epage><pages>eabo0924-eabo0924</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>The human cerebral cortex houses 1000 times more neurons than that of the cerebral cortex of a mouse, but the possible differences in synaptic circuits between these species are still poorly understood. We used three-dimensional electron microscopy of mouse, macaque, and human cortical samples to study their cell type composition and synaptic circuit architecture. The 2.5-fold increase in interneurons in humans compared with mice was compensated by a change in axonal connection probabilities and therefore did not yield a commensurate increase in inhibitory-versus-excitatory synaptic input balance on human pyramidal cells. Rather, increased inhibition created an expanded interneuron-to-interneuron network, driven by an expansion of interneuron-targeting interneuron types and an increase in their synaptic selectivity for interneuron innervation. These constitute key neuronal network alterations in the human cortex.
Over the past few decades, the mouse has become a model organism for brain research. Because of the close evolutionary similarity of ion channels, synaptic receptors, and other key molecular constituents of the brain to that of humans, corresponding similarity has been assumed for cortical neuronal circuits. However, comparative synaptic-resolution connectomic studies are required to determine the degree to which circuit structure has evolved between species. Using three-dimensional electron microscopy, Loomba
et al
. compared mouse and human/macaque cortex synaptic connectivity. Although human cells are much larger compared with mouse neurons and are more numerous, on average, they do not receive more synapses. And, even though there are three times more interneurons in the human cortex than in the mouse, the excitation-to-inhibition ratio is similar between the species. —PRS
Three-dimensional electron microscopy of mouse, macaque, and human brain samples elucidates cell type composition and synaptic circuit architecture.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.abo0924</doi><orcidid>https://orcid.org/0000-0002-0352-2977</orcidid><orcidid>https://orcid.org/0000-0003-3063-8972</orcidid><orcidid>https://orcid.org/0000-0002-9602-6066</orcidid><orcidid>https://orcid.org/0000-0002-4576-1239</orcidid><orcidid>https://orcid.org/0000-0001-7973-0767</orcidid><orcidid>https://orcid.org/0000-0002-0737-7746</orcidid><orcidid>https://orcid.org/0000-0002-2385-045X</orcidid><orcidid>https://orcid.org/0000-0003-4123-4690</orcidid><orcidid>https://orcid.org/0000-0002-8547-4816</orcidid><orcidid>https://orcid.org/0000-0002-5152-1610</orcidid><orcidid>https://orcid.org/0000-0002-8004-6812</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2022-07, Vol.377 (6602), p.eabo0924-eabo0924 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2681036340 |
source | American Association for the Advancement of Science; Alma/SFX Local Collection |
subjects | Biopsy Brain Brain research Cerebral cortex Circuits Configurations Cortex (frontal) Cortex (parietal) Data acquisition Divergence Electron microscopy Epilepsy Evolution Homology Human tissues Innervation Interneurons Introduced species Ion channels Mental disorders Microscopy Nervous system Networks Neural networks Neurons Neurosurgery Pyramidal cells Similarity Species Substantia grisea Surgery Synapses Temporal lobe Thickening Transcriptomics Tumors |
title | Connectomic comparison of mouse and human cortex |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A59%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connectomic%20comparison%20of%20mouse%20and%20human%20cortex&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Loomba,%20Sahil&rft.date=2022-07-08&rft.volume=377&rft.issue=6602&rft.spage=eabo0924&rft.epage=eabo0924&rft.pages=eabo0924-eabo0924&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abo0924&rft_dat=%3Cproquest_cross%3E2681036340%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-b82bc7ed4dbb9b7175e6efdf22c63df7f25863c7fa2ed21de6dcb2cdf64839ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2686242456&rft_id=info:pmid/&rfr_iscdi=true |