Loading…

Connectomic comparison of mouse and human cortex

The human cerebral cortex houses 1000 times more neurons than that of the cerebral cortex of a mouse, but the possible differences in synaptic circuits between these species are still poorly understood. We used three-dimensional electron microscopy of mouse, macaque, and human cortical samples to st...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2022-07, Vol.377 (6602), p.eabo0924-eabo0924
Main Authors: Loomba, Sahil, Straehle, Jakob, Gangadharan, Vijayan, Heike, Natalie, Khalifa, Abdelrahman, Motta, Alessandro, Ju, Niansheng, Sievers, Meike, Gempt, Jens, Meyer, Hanno S., Helmstaedter, Moritz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-b82bc7ed4dbb9b7175e6efdf22c63df7f25863c7fa2ed21de6dcb2cdf64839ae3
cites cdi_FETCH-LOGICAL-c409t-b82bc7ed4dbb9b7175e6efdf22c63df7f25863c7fa2ed21de6dcb2cdf64839ae3
container_end_page eabo0924
container_issue 6602
container_start_page eabo0924
container_title Science (American Association for the Advancement of Science)
container_volume 377
creator Loomba, Sahil
Straehle, Jakob
Gangadharan, Vijayan
Heike, Natalie
Khalifa, Abdelrahman
Motta, Alessandro
Ju, Niansheng
Sievers, Meike
Gempt, Jens
Meyer, Hanno S.
Helmstaedter, Moritz
description The human cerebral cortex houses 1000 times more neurons than that of the cerebral cortex of a mouse, but the possible differences in synaptic circuits between these species are still poorly understood. We used three-dimensional electron microscopy of mouse, macaque, and human cortical samples to study their cell type composition and synaptic circuit architecture. The 2.5-fold increase in interneurons in humans compared with mice was compensated by a change in axonal connection probabilities and therefore did not yield a commensurate increase in inhibitory-versus-excitatory synaptic input balance on human pyramidal cells. Rather, increased inhibition created an expanded interneuron-to-interneuron network, driven by an expansion of interneuron-targeting interneuron types and an increase in their synaptic selectivity for interneuron innervation. These constitute key neuronal network alterations in the human cortex. Over the past few decades, the mouse has become a model organism for brain research. Because of the close evolutionary similarity of ion channels, synaptic receptors, and other key molecular constituents of the brain to that of humans, corresponding similarity has been assumed for cortical neuronal circuits. However, comparative synaptic-resolution connectomic studies are required to determine the degree to which circuit structure has evolved between species. Using three-dimensional electron microscopy, Loomba et al . compared mouse and human/macaque cortex synaptic connectivity. Although human cells are much larger compared with mouse neurons and are more numerous, on average, they do not receive more synapses. And, even though there are three times more interneurons in the human cortex than in the mouse, the excitation-to-inhibition ratio is similar between the species. —PRS Three-dimensional electron microscopy of mouse, macaque, and human brain samples elucidates cell type composition and synaptic circuit architecture.
doi_str_mv 10.1126/science.abo0924
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2681036340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681036340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-b82bc7ed4dbb9b7175e6efdf22c63df7f25863c7fa2ed21de6dcb2cdf64839ae3</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EEqUws0ZiYUnrV5x4RBEUpEosMFt-XItUjV3sRIJ_j6t2YrrD-XR07ofQPcErQqhYZztAsLDSJmJJ-QVaECybWlLMLtECYybqDrfNNbrJeYdxySRbINzHEMBOcRxsZeN40GnIMVTRV2OcM1Q6uOprHnUoaZrg5xZdeb3PcHe-S_T58vzRv9bb981b_7StLcdyqk1HjW3BcWeMNC1pGxDgnafUCuZ862nTCWZbryk4ShwIZw21zgveMamBLdHjqfeQ4vcMeVLjkC3s9zpAGaao6Ej5iXFc0Id_6C7OKZR1R0pQTnkjCrU-UTbFnBN4dUjDqNOvIlgdDaqzQXU2yP4Au41mzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686242456</pqid></control><display><type>article</type><title>Connectomic comparison of mouse and human cortex</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><creator>Loomba, Sahil ; Straehle, Jakob ; Gangadharan, Vijayan ; Heike, Natalie ; Khalifa, Abdelrahman ; Motta, Alessandro ; Ju, Niansheng ; Sievers, Meike ; Gempt, Jens ; Meyer, Hanno S. ; Helmstaedter, Moritz</creator><creatorcontrib>Loomba, Sahil ; Straehle, Jakob ; Gangadharan, Vijayan ; Heike, Natalie ; Khalifa, Abdelrahman ; Motta, Alessandro ; Ju, Niansheng ; Sievers, Meike ; Gempt, Jens ; Meyer, Hanno S. ; Helmstaedter, Moritz</creatorcontrib><description>The human cerebral cortex houses 1000 times more neurons than that of the cerebral cortex of a mouse, but the possible differences in synaptic circuits between these species are still poorly understood. We used three-dimensional electron microscopy of mouse, macaque, and human cortical samples to study their cell type composition and synaptic circuit architecture. The 2.5-fold increase in interneurons in humans compared with mice was compensated by a change in axonal connection probabilities and therefore did not yield a commensurate increase in inhibitory-versus-excitatory synaptic input balance on human pyramidal cells. Rather, increased inhibition created an expanded interneuron-to-interneuron network, driven by an expansion of interneuron-targeting interneuron types and an increase in their synaptic selectivity for interneuron innervation. These constitute key neuronal network alterations in the human cortex. Over the past few decades, the mouse has become a model organism for brain research. Because of the close evolutionary similarity of ion channels, synaptic receptors, and other key molecular constituents of the brain to that of humans, corresponding similarity has been assumed for cortical neuronal circuits. However, comparative synaptic-resolution connectomic studies are required to determine the degree to which circuit structure has evolved between species. Using three-dimensional electron microscopy, Loomba et al . compared mouse and human/macaque cortex synaptic connectivity. Although human cells are much larger compared with mouse neurons and are more numerous, on average, they do not receive more synapses. And, even though there are three times more interneurons in the human cortex than in the mouse, the excitation-to-inhibition ratio is similar between the species. —PRS Three-dimensional electron microscopy of mouse, macaque, and human brain samples elucidates cell type composition and synaptic circuit architecture.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abo0924</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Biopsy ; Brain ; Brain research ; Cerebral cortex ; Circuits ; Configurations ; Cortex (frontal) ; Cortex (parietal) ; Data acquisition ; Divergence ; Electron microscopy ; Epilepsy ; Evolution ; Homology ; Human tissues ; Innervation ; Interneurons ; Introduced species ; Ion channels ; Mental disorders ; Microscopy ; Nervous system ; Networks ; Neural networks ; Neurons ; Neurosurgery ; Pyramidal cells ; Similarity ; Species ; Substantia grisea ; Surgery ; Synapses ; Temporal lobe ; Thickening ; Transcriptomics ; Tumors</subject><ispartof>Science (American Association for the Advancement of Science), 2022-07, Vol.377 (6602), p.eabo0924-eabo0924</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-b82bc7ed4dbb9b7175e6efdf22c63df7f25863c7fa2ed21de6dcb2cdf64839ae3</citedby><cites>FETCH-LOGICAL-c409t-b82bc7ed4dbb9b7175e6efdf22c63df7f25863c7fa2ed21de6dcb2cdf64839ae3</cites><orcidid>0000-0002-0352-2977 ; 0000-0003-3063-8972 ; 0000-0002-9602-6066 ; 0000-0002-4576-1239 ; 0000-0001-7973-0767 ; 0000-0002-0737-7746 ; 0000-0002-2385-045X ; 0000-0003-4123-4690 ; 0000-0002-8547-4816 ; 0000-0002-5152-1610 ; 0000-0002-8004-6812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids></links><search><creatorcontrib>Loomba, Sahil</creatorcontrib><creatorcontrib>Straehle, Jakob</creatorcontrib><creatorcontrib>Gangadharan, Vijayan</creatorcontrib><creatorcontrib>Heike, Natalie</creatorcontrib><creatorcontrib>Khalifa, Abdelrahman</creatorcontrib><creatorcontrib>Motta, Alessandro</creatorcontrib><creatorcontrib>Ju, Niansheng</creatorcontrib><creatorcontrib>Sievers, Meike</creatorcontrib><creatorcontrib>Gempt, Jens</creatorcontrib><creatorcontrib>Meyer, Hanno S.</creatorcontrib><creatorcontrib>Helmstaedter, Moritz</creatorcontrib><title>Connectomic comparison of mouse and human cortex</title><title>Science (American Association for the Advancement of Science)</title><description>The human cerebral cortex houses 1000 times more neurons than that of the cerebral cortex of a mouse, but the possible differences in synaptic circuits between these species are still poorly understood. We used three-dimensional electron microscopy of mouse, macaque, and human cortical samples to study their cell type composition and synaptic circuit architecture. The 2.5-fold increase in interneurons in humans compared with mice was compensated by a change in axonal connection probabilities and therefore did not yield a commensurate increase in inhibitory-versus-excitatory synaptic input balance on human pyramidal cells. Rather, increased inhibition created an expanded interneuron-to-interneuron network, driven by an expansion of interneuron-targeting interneuron types and an increase in their synaptic selectivity for interneuron innervation. These constitute key neuronal network alterations in the human cortex. Over the past few decades, the mouse has become a model organism for brain research. Because of the close evolutionary similarity of ion channels, synaptic receptors, and other key molecular constituents of the brain to that of humans, corresponding similarity has been assumed for cortical neuronal circuits. However, comparative synaptic-resolution connectomic studies are required to determine the degree to which circuit structure has evolved between species. Using three-dimensional electron microscopy, Loomba et al . compared mouse and human/macaque cortex synaptic connectivity. Although human cells are much larger compared with mouse neurons and are more numerous, on average, they do not receive more synapses. And, even though there are three times more interneurons in the human cortex than in the mouse, the excitation-to-inhibition ratio is similar between the species. —PRS Three-dimensional electron microscopy of mouse, macaque, and human brain samples elucidates cell type composition and synaptic circuit architecture.</description><subject>Biopsy</subject><subject>Brain</subject><subject>Brain research</subject><subject>Cerebral cortex</subject><subject>Circuits</subject><subject>Configurations</subject><subject>Cortex (frontal)</subject><subject>Cortex (parietal)</subject><subject>Data acquisition</subject><subject>Divergence</subject><subject>Electron microscopy</subject><subject>Epilepsy</subject><subject>Evolution</subject><subject>Homology</subject><subject>Human tissues</subject><subject>Innervation</subject><subject>Interneurons</subject><subject>Introduced species</subject><subject>Ion channels</subject><subject>Mental disorders</subject><subject>Microscopy</subject><subject>Nervous system</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neurosurgery</subject><subject>Pyramidal cells</subject><subject>Similarity</subject><subject>Species</subject><subject>Substantia grisea</subject><subject>Surgery</subject><subject>Synapses</subject><subject>Temporal lobe</subject><subject>Thickening</subject><subject>Transcriptomics</subject><subject>Tumors</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAUhS0EEqUws0ZiYUnrV5x4RBEUpEosMFt-XItUjV3sRIJ_j6t2YrrD-XR07ofQPcErQqhYZztAsLDSJmJJ-QVaECybWlLMLtECYybqDrfNNbrJeYdxySRbINzHEMBOcRxsZeN40GnIMVTRV2OcM1Q6uOprHnUoaZrg5xZdeb3PcHe-S_T58vzRv9bb981b_7StLcdyqk1HjW3BcWeMNC1pGxDgnafUCuZ862nTCWZbryk4ShwIZw21zgveMamBLdHjqfeQ4vcMeVLjkC3s9zpAGaao6Ej5iXFc0Id_6C7OKZR1R0pQTnkjCrU-UTbFnBN4dUjDqNOvIlgdDaqzQXU2yP4Au41mzg</recordid><startdate>20220708</startdate><enddate>20220708</enddate><creator>Loomba, Sahil</creator><creator>Straehle, Jakob</creator><creator>Gangadharan, Vijayan</creator><creator>Heike, Natalie</creator><creator>Khalifa, Abdelrahman</creator><creator>Motta, Alessandro</creator><creator>Ju, Niansheng</creator><creator>Sievers, Meike</creator><creator>Gempt, Jens</creator><creator>Meyer, Hanno S.</creator><creator>Helmstaedter, Moritz</creator><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0352-2977</orcidid><orcidid>https://orcid.org/0000-0003-3063-8972</orcidid><orcidid>https://orcid.org/0000-0002-9602-6066</orcidid><orcidid>https://orcid.org/0000-0002-4576-1239</orcidid><orcidid>https://orcid.org/0000-0001-7973-0767</orcidid><orcidid>https://orcid.org/0000-0002-0737-7746</orcidid><orcidid>https://orcid.org/0000-0002-2385-045X</orcidid><orcidid>https://orcid.org/0000-0003-4123-4690</orcidid><orcidid>https://orcid.org/0000-0002-8547-4816</orcidid><orcidid>https://orcid.org/0000-0002-5152-1610</orcidid><orcidid>https://orcid.org/0000-0002-8004-6812</orcidid></search><sort><creationdate>20220708</creationdate><title>Connectomic comparison of mouse and human cortex</title><author>Loomba, Sahil ; Straehle, Jakob ; Gangadharan, Vijayan ; Heike, Natalie ; Khalifa, Abdelrahman ; Motta, Alessandro ; Ju, Niansheng ; Sievers, Meike ; Gempt, Jens ; Meyer, Hanno S. ; Helmstaedter, Moritz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-b82bc7ed4dbb9b7175e6efdf22c63df7f25863c7fa2ed21de6dcb2cdf64839ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biopsy</topic><topic>Brain</topic><topic>Brain research</topic><topic>Cerebral cortex</topic><topic>Circuits</topic><topic>Configurations</topic><topic>Cortex (frontal)</topic><topic>Cortex (parietal)</topic><topic>Data acquisition</topic><topic>Divergence</topic><topic>Electron microscopy</topic><topic>Epilepsy</topic><topic>Evolution</topic><topic>Homology</topic><topic>Human tissues</topic><topic>Innervation</topic><topic>Interneurons</topic><topic>Introduced species</topic><topic>Ion channels</topic><topic>Mental disorders</topic><topic>Microscopy</topic><topic>Nervous system</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neurosurgery</topic><topic>Pyramidal cells</topic><topic>Similarity</topic><topic>Species</topic><topic>Substantia grisea</topic><topic>Surgery</topic><topic>Synapses</topic><topic>Temporal lobe</topic><topic>Thickening</topic><topic>Transcriptomics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loomba, Sahil</creatorcontrib><creatorcontrib>Straehle, Jakob</creatorcontrib><creatorcontrib>Gangadharan, Vijayan</creatorcontrib><creatorcontrib>Heike, Natalie</creatorcontrib><creatorcontrib>Khalifa, Abdelrahman</creatorcontrib><creatorcontrib>Motta, Alessandro</creatorcontrib><creatorcontrib>Ju, Niansheng</creatorcontrib><creatorcontrib>Sievers, Meike</creatorcontrib><creatorcontrib>Gempt, Jens</creatorcontrib><creatorcontrib>Meyer, Hanno S.</creatorcontrib><creatorcontrib>Helmstaedter, Moritz</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loomba, Sahil</au><au>Straehle, Jakob</au><au>Gangadharan, Vijayan</au><au>Heike, Natalie</au><au>Khalifa, Abdelrahman</au><au>Motta, Alessandro</au><au>Ju, Niansheng</au><au>Sievers, Meike</au><au>Gempt, Jens</au><au>Meyer, Hanno S.</au><au>Helmstaedter, Moritz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connectomic comparison of mouse and human cortex</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2022-07-08</date><risdate>2022</risdate><volume>377</volume><issue>6602</issue><spage>eabo0924</spage><epage>eabo0924</epage><pages>eabo0924-eabo0924</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>The human cerebral cortex houses 1000 times more neurons than that of the cerebral cortex of a mouse, but the possible differences in synaptic circuits between these species are still poorly understood. We used three-dimensional electron microscopy of mouse, macaque, and human cortical samples to study their cell type composition and synaptic circuit architecture. The 2.5-fold increase in interneurons in humans compared with mice was compensated by a change in axonal connection probabilities and therefore did not yield a commensurate increase in inhibitory-versus-excitatory synaptic input balance on human pyramidal cells. Rather, increased inhibition created an expanded interneuron-to-interneuron network, driven by an expansion of interneuron-targeting interneuron types and an increase in their synaptic selectivity for interneuron innervation. These constitute key neuronal network alterations in the human cortex. Over the past few decades, the mouse has become a model organism for brain research. Because of the close evolutionary similarity of ion channels, synaptic receptors, and other key molecular constituents of the brain to that of humans, corresponding similarity has been assumed for cortical neuronal circuits. However, comparative synaptic-resolution connectomic studies are required to determine the degree to which circuit structure has evolved between species. Using three-dimensional electron microscopy, Loomba et al . compared mouse and human/macaque cortex synaptic connectivity. Although human cells are much larger compared with mouse neurons and are more numerous, on average, they do not receive more synapses. And, even though there are three times more interneurons in the human cortex than in the mouse, the excitation-to-inhibition ratio is similar between the species. —PRS Three-dimensional electron microscopy of mouse, macaque, and human brain samples elucidates cell type composition and synaptic circuit architecture.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.abo0924</doi><orcidid>https://orcid.org/0000-0002-0352-2977</orcidid><orcidid>https://orcid.org/0000-0003-3063-8972</orcidid><orcidid>https://orcid.org/0000-0002-9602-6066</orcidid><orcidid>https://orcid.org/0000-0002-4576-1239</orcidid><orcidid>https://orcid.org/0000-0001-7973-0767</orcidid><orcidid>https://orcid.org/0000-0002-0737-7746</orcidid><orcidid>https://orcid.org/0000-0002-2385-045X</orcidid><orcidid>https://orcid.org/0000-0003-4123-4690</orcidid><orcidid>https://orcid.org/0000-0002-8547-4816</orcidid><orcidid>https://orcid.org/0000-0002-5152-1610</orcidid><orcidid>https://orcid.org/0000-0002-8004-6812</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2022-07, Vol.377 (6602), p.eabo0924-eabo0924
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2681036340
source American Association for the Advancement of Science; Alma/SFX Local Collection
subjects Biopsy
Brain
Brain research
Cerebral cortex
Circuits
Configurations
Cortex (frontal)
Cortex (parietal)
Data acquisition
Divergence
Electron microscopy
Epilepsy
Evolution
Homology
Human tissues
Innervation
Interneurons
Introduced species
Ion channels
Mental disorders
Microscopy
Nervous system
Networks
Neural networks
Neurons
Neurosurgery
Pyramidal cells
Similarity
Species
Substantia grisea
Surgery
Synapses
Temporal lobe
Thickening
Transcriptomics
Tumors
title Connectomic comparison of mouse and human cortex
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A59%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connectomic%20comparison%20of%20mouse%20and%20human%20cortex&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Loomba,%20Sahil&rft.date=2022-07-08&rft.volume=377&rft.issue=6602&rft.spage=eabo0924&rft.epage=eabo0924&rft.pages=eabo0924-eabo0924&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abo0924&rft_dat=%3Cproquest_cross%3E2681036340%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-b82bc7ed4dbb9b7175e6efdf22c63df7f25863c7fa2ed21de6dcb2cdf64839ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2686242456&rft_id=info:pmid/&rfr_iscdi=true