Loading…

A Hybrid Expert System for Individualized Quantification of Electrical Status Epilepticus During Sleep Using Biogeography-Based Optimization

Electrical status epilepticus during sleep (ESES) is an epileptic encephalopathy in children with complex clinical manifestations. It is accompanied by specific electroencephalography (EEG) patterns of continuous spike and slow-waves. Quantifying such EEG patterns is critical to the diagnosis of ESE...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering 2022, Vol.30, p.1920-1930
Main Authors: Zhou, Wei, Zhao, Xian, Wang, Xinhua, Zhou, Yuanfeng, Wang, Yalin, Meng, Long, Fan, Jiahao, Shen, Ning, Zhou, Shuizhen, Chen, Wei, Chen, Chen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-460e8a8679c959e8b43ac0048863cc846a3b02ee85895cc07d7912c4401161073
cites cdi_FETCH-LOGICAL-c438t-460e8a8679c959e8b43ac0048863cc846a3b02ee85895cc07d7912c4401161073
container_end_page 1930
container_issue
container_start_page 1920
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 30
creator Zhou, Wei
Zhao, Xian
Wang, Xinhua
Zhou, Yuanfeng
Wang, Yalin
Meng, Long
Fan, Jiahao
Shen, Ning
Zhou, Shuizhen
Chen, Wei
Chen, Chen
description Electrical status epilepticus during sleep (ESES) is an epileptic encephalopathy in children with complex clinical manifestations. It is accompanied by specific electroencephalography (EEG) patterns of continuous spike and slow-waves. Quantifying such EEG patterns is critical to the diagnosis of ESES. While most of the existing automatic ESES quantification systems ignore the morphological variations of the signal as well as the individual variability among subjects. To address these issues, this paper presents a hybrid expert system that dedicates to mimicking the decision-making process of clinicians in ESES quantification by taking the morphological variations, individual variability, and medical knowledge into consideration. The proposed hybrid system not only offers a general scheme that could propel a semi-auto morphology analysis-based expert decision model to a fully automated ESES quantification with biogeography-based optimization (BBO), but also proposes a more precise individualized quantification system to involve the personalized characteristics by adopting an individualized parameters-selection framework. The feasibility and reliability of the proposed method are evaluated on a clinical dataset collected from twenty subjects at Children's Hospital of Fudan University, Shanghai, China. The estimation error for the individualized quantitative descriptor ESES is 0-4.32% and the average estimation error is 0.95% for all subjects. Experimental results show the presented system outperforms existing works and the individualized system significantly improves the performance of ESES quantification. The favorable results indicate that the proposed hybrid expert system for automatic ESES quantification is promising to support the diagnosis of ESES.
doi_str_mv 10.1109/TNSRE.2022.3186942
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2681812009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9809996</ieee_id><doaj_id>oai_doaj_org_article_0f5dd5f96f1545bba1528c3c7ee46605</doaj_id><sourcerecordid>2691875300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-460e8a8679c959e8b43ac0048863cc846a3b02ee85895cc07d7912c4401161073</originalsourceid><addsrcrecordid>eNpdkUtvEzEUhUcIRB_wB2BjiQ2bCdfPsZd9BBqpooK065HjuRMcTcaDPYNIf0N_NE5SdcHqHl195-henaL4QGFGKZgv99-XP-czBozNONXKCPaqOKVS6hIYhdd7zUUpOIOT4iylDQCtlKzeFidcVooLJU6Lpwtys1tF35D53wHjSJa7NOKWtCGSRd_4P76ZbOcfsSE_JtuPvvXOjj70JLRk3qEbY150ZDnacUpkPvgOh9G7rK-n6Ps1WXaIA3lIe33pwxrDOtrh1668tCmn3mV66x8Pme-KN63tEr5_nufFw9f5_dVNeXv3bXF1cVs6wfVYCgWorVaVcUYa1CvBrQMQWivunBbK8hUwRC21kc5B1VSGMicEUKooVPy8WBxzm2A39RD91sZdHayvD4sQ17WN-YkOa2hl08jWqJZKIVcrSyXTjrsKUSgFMmd9PmYNMfyeMI311ieHXWd7DFOqmdJUUwZgMvrpP3QTptjnTzNlqK4kB8gUO1IuhpQiti8HUqj3vdeH3ut97_Vz79n08WjyiPhiMBqMMYr_A9gdp-c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691875300</pqid></control><display><type>article</type><title>A Hybrid Expert System for Individualized Quantification of Electrical Status Epilepticus During Sleep Using Biogeography-Based Optimization</title><source>Alma/SFX Local Collection</source><creator>Zhou, Wei ; Zhao, Xian ; Wang, Xinhua ; Zhou, Yuanfeng ; Wang, Yalin ; Meng, Long ; Fan, Jiahao ; Shen, Ning ; Zhou, Shuizhen ; Chen, Wei ; Chen, Chen</creator><creatorcontrib>Zhou, Wei ; Zhao, Xian ; Wang, Xinhua ; Zhou, Yuanfeng ; Wang, Yalin ; Meng, Long ; Fan, Jiahao ; Shen, Ning ; Zhou, Shuizhen ; Chen, Wei ; Chen, Chen</creatorcontrib><description>Electrical status epilepticus during sleep (ESES) is an epileptic encephalopathy in children with complex clinical manifestations. It is accompanied by specific electroencephalography (EEG) patterns of continuous spike and slow-waves. Quantifying such EEG patterns is critical to the diagnosis of ESES. While most of the existing automatic ESES quantification systems ignore the morphological variations of the signal as well as the individual variability among subjects. To address these issues, this paper presents a hybrid expert system that dedicates to mimicking the decision-making process of clinicians in ESES quantification by taking the morphological variations, individual variability, and medical knowledge into consideration. The proposed hybrid system not only offers a general scheme that could propel a semi-auto morphology analysis-based expert decision model to a fully automated ESES quantification with biogeography-based optimization (BBO), but also proposes a more precise individualized quantification system to involve the personalized characteristics by adopting an individualized parameters-selection framework. The feasibility and reliability of the proposed method are evaluated on a clinical dataset collected from twenty subjects at Children's Hospital of Fudan University, Shanghai, China. The estimation error for the individualized quantitative descriptor ESES is 0-4.32% and the average estimation error is 0.95% for all subjects. Experimental results show the presented system outperforms existing works and the individualized system significantly improves the performance of ESES quantification. The favorable results indicate that the proposed hybrid expert system for automatic ESES quantification is promising to support the diagnosis of ESES.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2022.3186942</identifier><identifier>PMID: 35763464</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biogeography ; Biogeography-based optimization ; Brain modeling ; Decision analysis ; Decision making ; Detectors ; Diagnosis ; EEG ; electrical status epilepticus during sleep ; Electroencephalography ; Encephalopathy ; Epilepsy ; Expert systems ; Feature extraction ; Firing pattern ; Hybrid systems ; Morphology ; Optimization ; Reliability analysis ; Sleep</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2022, Vol.30, p.1920-1930</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-460e8a8679c959e8b43ac0048863cc846a3b02ee85895cc07d7912c4401161073</citedby><cites>FETCH-LOGICAL-c438t-460e8a8679c959e8b43ac0048863cc846a3b02ee85895cc07d7912c4401161073</cites><orcidid>0000-0001-7587-3314 ; 0000-0002-0559-3904 ; 0000-0003-4591-321X ; 0000-0003-3720-718X ; 0000-0002-8821-1667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Zhao, Xian</creatorcontrib><creatorcontrib>Wang, Xinhua</creatorcontrib><creatorcontrib>Zhou, Yuanfeng</creatorcontrib><creatorcontrib>Wang, Yalin</creatorcontrib><creatorcontrib>Meng, Long</creatorcontrib><creatorcontrib>Fan, Jiahao</creatorcontrib><creatorcontrib>Shen, Ning</creatorcontrib><creatorcontrib>Zhou, Shuizhen</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><title>A Hybrid Expert System for Individualized Quantification of Electrical Status Epilepticus During Sleep Using Biogeography-Based Optimization</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><description>Electrical status epilepticus during sleep (ESES) is an epileptic encephalopathy in children with complex clinical manifestations. It is accompanied by specific electroencephalography (EEG) patterns of continuous spike and slow-waves. Quantifying such EEG patterns is critical to the diagnosis of ESES. While most of the existing automatic ESES quantification systems ignore the morphological variations of the signal as well as the individual variability among subjects. To address these issues, this paper presents a hybrid expert system that dedicates to mimicking the decision-making process of clinicians in ESES quantification by taking the morphological variations, individual variability, and medical knowledge into consideration. The proposed hybrid system not only offers a general scheme that could propel a semi-auto morphology analysis-based expert decision model to a fully automated ESES quantification with biogeography-based optimization (BBO), but also proposes a more precise individualized quantification system to involve the personalized characteristics by adopting an individualized parameters-selection framework. The feasibility and reliability of the proposed method are evaluated on a clinical dataset collected from twenty subjects at Children's Hospital of Fudan University, Shanghai, China. The estimation error for the individualized quantitative descriptor ESES is 0-4.32% and the average estimation error is 0.95% for all subjects. Experimental results show the presented system outperforms existing works and the individualized system significantly improves the performance of ESES quantification. The favorable results indicate that the proposed hybrid expert system for automatic ESES quantification is promising to support the diagnosis of ESES.</description><subject>Biogeography</subject><subject>Biogeography-based optimization</subject><subject>Brain modeling</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Detectors</subject><subject>Diagnosis</subject><subject>EEG</subject><subject>electrical status epilepticus during sleep</subject><subject>Electroencephalography</subject><subject>Encephalopathy</subject><subject>Epilepsy</subject><subject>Expert systems</subject><subject>Feature extraction</subject><subject>Firing pattern</subject><subject>Hybrid systems</subject><subject>Morphology</subject><subject>Optimization</subject><subject>Reliability analysis</subject><subject>Sleep</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpdkUtvEzEUhUcIRB_wB2BjiQ2bCdfPsZd9BBqpooK065HjuRMcTcaDPYNIf0N_NE5SdcHqHl195-henaL4QGFGKZgv99-XP-czBozNONXKCPaqOKVS6hIYhdd7zUUpOIOT4iylDQCtlKzeFidcVooLJU6Lpwtys1tF35D53wHjSJa7NOKWtCGSRd_4P76ZbOcfsSE_JtuPvvXOjj70JLRk3qEbY150ZDnacUpkPvgOh9G7rK-n6Ps1WXaIA3lIe33pwxrDOtrh1668tCmn3mV66x8Pme-KN63tEr5_nufFw9f5_dVNeXv3bXF1cVs6wfVYCgWorVaVcUYa1CvBrQMQWivunBbK8hUwRC21kc5B1VSGMicEUKooVPy8WBxzm2A39RD91sZdHayvD4sQ17WN-YkOa2hl08jWqJZKIVcrSyXTjrsKUSgFMmd9PmYNMfyeMI311ieHXWd7DFOqmdJUUwZgMvrpP3QTptjnTzNlqK4kB8gUO1IuhpQiti8HUqj3vdeH3ut97_Vz79n08WjyiPhiMBqMMYr_A9gdp-c</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhou, Wei</creator><creator>Zhao, Xian</creator><creator>Wang, Xinhua</creator><creator>Zhou, Yuanfeng</creator><creator>Wang, Yalin</creator><creator>Meng, Long</creator><creator>Fan, Jiahao</creator><creator>Shen, Ning</creator><creator>Zhou, Shuizhen</creator><creator>Chen, Wei</creator><creator>Chen, Chen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7587-3314</orcidid><orcidid>https://orcid.org/0000-0002-0559-3904</orcidid><orcidid>https://orcid.org/0000-0003-4591-321X</orcidid><orcidid>https://orcid.org/0000-0003-3720-718X</orcidid><orcidid>https://orcid.org/0000-0002-8821-1667</orcidid></search><sort><creationdate>2022</creationdate><title>A Hybrid Expert System for Individualized Quantification of Electrical Status Epilepticus During Sleep Using Biogeography-Based Optimization</title><author>Zhou, Wei ; Zhao, Xian ; Wang, Xinhua ; Zhou, Yuanfeng ; Wang, Yalin ; Meng, Long ; Fan, Jiahao ; Shen, Ning ; Zhou, Shuizhen ; Chen, Wei ; Chen, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-460e8a8679c959e8b43ac0048863cc846a3b02ee85895cc07d7912c4401161073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biogeography</topic><topic>Biogeography-based optimization</topic><topic>Brain modeling</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Detectors</topic><topic>Diagnosis</topic><topic>EEG</topic><topic>electrical status epilepticus during sleep</topic><topic>Electroencephalography</topic><topic>Encephalopathy</topic><topic>Epilepsy</topic><topic>Expert systems</topic><topic>Feature extraction</topic><topic>Firing pattern</topic><topic>Hybrid systems</topic><topic>Morphology</topic><topic>Optimization</topic><topic>Reliability analysis</topic><topic>Sleep</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Zhao, Xian</creatorcontrib><creatorcontrib>Wang, Xinhua</creatorcontrib><creatorcontrib>Zhou, Yuanfeng</creatorcontrib><creatorcontrib>Wang, Yalin</creatorcontrib><creatorcontrib>Meng, Long</creatorcontrib><creatorcontrib>Fan, Jiahao</creatorcontrib><creatorcontrib>Shen, Ning</creatorcontrib><creatorcontrib>Zhou, Shuizhen</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Wei</au><au>Zhao, Xian</au><au>Wang, Xinhua</au><au>Zhou, Yuanfeng</au><au>Wang, Yalin</au><au>Meng, Long</au><au>Fan, Jiahao</au><au>Shen, Ning</au><au>Zhou, Shuizhen</au><au>Chen, Wei</au><au>Chen, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Expert System for Individualized Quantification of Electrical Status Epilepticus During Sleep Using Biogeography-Based Optimization</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><date>2022</date><risdate>2022</risdate><volume>30</volume><spage>1920</spage><epage>1930</epage><pages>1920-1930</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Electrical status epilepticus during sleep (ESES) is an epileptic encephalopathy in children with complex clinical manifestations. It is accompanied by specific electroencephalography (EEG) patterns of continuous spike and slow-waves. Quantifying such EEG patterns is critical to the diagnosis of ESES. While most of the existing automatic ESES quantification systems ignore the morphological variations of the signal as well as the individual variability among subjects. To address these issues, this paper presents a hybrid expert system that dedicates to mimicking the decision-making process of clinicians in ESES quantification by taking the morphological variations, individual variability, and medical knowledge into consideration. The proposed hybrid system not only offers a general scheme that could propel a semi-auto morphology analysis-based expert decision model to a fully automated ESES quantification with biogeography-based optimization (BBO), but also proposes a more precise individualized quantification system to involve the personalized characteristics by adopting an individualized parameters-selection framework. The feasibility and reliability of the proposed method are evaluated on a clinical dataset collected from twenty subjects at Children's Hospital of Fudan University, Shanghai, China. The estimation error for the individualized quantitative descriptor ESES is 0-4.32% and the average estimation error is 0.95% for all subjects. Experimental results show the presented system outperforms existing works and the individualized system significantly improves the performance of ESES quantification. The favorable results indicate that the proposed hybrid expert system for automatic ESES quantification is promising to support the diagnosis of ESES.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>35763464</pmid><doi>10.1109/TNSRE.2022.3186942</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7587-3314</orcidid><orcidid>https://orcid.org/0000-0002-0559-3904</orcidid><orcidid>https://orcid.org/0000-0003-4591-321X</orcidid><orcidid>https://orcid.org/0000-0003-3720-718X</orcidid><orcidid>https://orcid.org/0000-0002-8821-1667</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2022, Vol.30, p.1920-1930
issn 1534-4320
1558-0210
language eng
recordid cdi_proquest_miscellaneous_2681812009
source Alma/SFX Local Collection
subjects Biogeography
Biogeography-based optimization
Brain modeling
Decision analysis
Decision making
Detectors
Diagnosis
EEG
electrical status epilepticus during sleep
Electroencephalography
Encephalopathy
Epilepsy
Expert systems
Feature extraction
Firing pattern
Hybrid systems
Morphology
Optimization
Reliability analysis
Sleep
title A Hybrid Expert System for Individualized Quantification of Electrical Status Epilepticus During Sleep Using Biogeography-Based Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Expert%20System%20for%20Individualized%20Quantification%20of%20Electrical%20Status%20Epilepticus%20During%20Sleep%20Using%20Biogeography-Based%20Optimization&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Zhou,%20Wei&rft.date=2022&rft.volume=30&rft.spage=1920&rft.epage=1930&rft.pages=1920-1930&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2022.3186942&rft_dat=%3Cproquest_ieee_%3E2691875300%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-460e8a8679c959e8b43ac0048863cc846a3b02ee85895cc07d7912c4401161073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2691875300&rft_id=info:pmid/35763464&rft_ieee_id=9809996&rfr_iscdi=true