Loading…
A Hybrid Expert System for Individualized Quantification of Electrical Status Epilepticus During Sleep Using Biogeography-Based Optimization
Electrical status epilepticus during sleep (ESES) is an epileptic encephalopathy in children with complex clinical manifestations. It is accompanied by specific electroencephalography (EEG) patterns of continuous spike and slow-waves. Quantifying such EEG patterns is critical to the diagnosis of ESE...
Saved in:
Published in: | IEEE transactions on neural systems and rehabilitation engineering 2022, Vol.30, p.1920-1930 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-460e8a8679c959e8b43ac0048863cc846a3b02ee85895cc07d7912c4401161073 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-460e8a8679c959e8b43ac0048863cc846a3b02ee85895cc07d7912c4401161073 |
container_end_page | 1930 |
container_issue | |
container_start_page | 1920 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 30 |
creator | Zhou, Wei Zhao, Xian Wang, Xinhua Zhou, Yuanfeng Wang, Yalin Meng, Long Fan, Jiahao Shen, Ning Zhou, Shuizhen Chen, Wei Chen, Chen |
description | Electrical status epilepticus during sleep (ESES) is an epileptic encephalopathy in children with complex clinical manifestations. It is accompanied by specific electroencephalography (EEG) patterns of continuous spike and slow-waves. Quantifying such EEG patterns is critical to the diagnosis of ESES. While most of the existing automatic ESES quantification systems ignore the morphological variations of the signal as well as the individual variability among subjects. To address these issues, this paper presents a hybrid expert system that dedicates to mimicking the decision-making process of clinicians in ESES quantification by taking the morphological variations, individual variability, and medical knowledge into consideration. The proposed hybrid system not only offers a general scheme that could propel a semi-auto morphology analysis-based expert decision model to a fully automated ESES quantification with biogeography-based optimization (BBO), but also proposes a more precise individualized quantification system to involve the personalized characteristics by adopting an individualized parameters-selection framework. The feasibility and reliability of the proposed method are evaluated on a clinical dataset collected from twenty subjects at Children's Hospital of Fudan University, Shanghai, China. The estimation error for the individualized quantitative descriptor ESES is 0-4.32% and the average estimation error is 0.95% for all subjects. Experimental results show the presented system outperforms existing works and the individualized system significantly improves the performance of ESES quantification. The favorable results indicate that the proposed hybrid expert system for automatic ESES quantification is promising to support the diagnosis of ESES. |
doi_str_mv | 10.1109/TNSRE.2022.3186942 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2681812009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9809996</ieee_id><doaj_id>oai_doaj_org_article_0f5dd5f96f1545bba1528c3c7ee46605</doaj_id><sourcerecordid>2691875300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-460e8a8679c959e8b43ac0048863cc846a3b02ee85895cc07d7912c4401161073</originalsourceid><addsrcrecordid>eNpdkUtvEzEUhUcIRB_wB2BjiQ2bCdfPsZd9BBqpooK065HjuRMcTcaDPYNIf0N_NE5SdcHqHl195-henaL4QGFGKZgv99-XP-czBozNONXKCPaqOKVS6hIYhdd7zUUpOIOT4iylDQCtlKzeFidcVooLJU6Lpwtys1tF35D53wHjSJa7NOKWtCGSRd_4P76ZbOcfsSE_JtuPvvXOjj70JLRk3qEbY150ZDnacUpkPvgOh9G7rK-n6Ps1WXaIA3lIe33pwxrDOtrh1668tCmn3mV66x8Pme-KN63tEr5_nufFw9f5_dVNeXv3bXF1cVs6wfVYCgWorVaVcUYa1CvBrQMQWivunBbK8hUwRC21kc5B1VSGMicEUKooVPy8WBxzm2A39RD91sZdHayvD4sQ17WN-YkOa2hl08jWqJZKIVcrSyXTjrsKUSgFMmd9PmYNMfyeMI311ieHXWd7DFOqmdJUUwZgMvrpP3QTptjnTzNlqK4kB8gUO1IuhpQiti8HUqj3vdeH3ut97_Vz79n08WjyiPhiMBqMMYr_A9gdp-c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691875300</pqid></control><display><type>article</type><title>A Hybrid Expert System for Individualized Quantification of Electrical Status Epilepticus During Sleep Using Biogeography-Based Optimization</title><source>Alma/SFX Local Collection</source><creator>Zhou, Wei ; Zhao, Xian ; Wang, Xinhua ; Zhou, Yuanfeng ; Wang, Yalin ; Meng, Long ; Fan, Jiahao ; Shen, Ning ; Zhou, Shuizhen ; Chen, Wei ; Chen, Chen</creator><creatorcontrib>Zhou, Wei ; Zhao, Xian ; Wang, Xinhua ; Zhou, Yuanfeng ; Wang, Yalin ; Meng, Long ; Fan, Jiahao ; Shen, Ning ; Zhou, Shuizhen ; Chen, Wei ; Chen, Chen</creatorcontrib><description>Electrical status epilepticus during sleep (ESES) is an epileptic encephalopathy in children with complex clinical manifestations. It is accompanied by specific electroencephalography (EEG) patterns of continuous spike and slow-waves. Quantifying such EEG patterns is critical to the diagnosis of ESES. While most of the existing automatic ESES quantification systems ignore the morphological variations of the signal as well as the individual variability among subjects. To address these issues, this paper presents a hybrid expert system that dedicates to mimicking the decision-making process of clinicians in ESES quantification by taking the morphological variations, individual variability, and medical knowledge into consideration. The proposed hybrid system not only offers a general scheme that could propel a semi-auto morphology analysis-based expert decision model to a fully automated ESES quantification with biogeography-based optimization (BBO), but also proposes a more precise individualized quantification system to involve the personalized characteristics by adopting an individualized parameters-selection framework. The feasibility and reliability of the proposed method are evaluated on a clinical dataset collected from twenty subjects at Children's Hospital of Fudan University, Shanghai, China. The estimation error for the individualized quantitative descriptor ESES is 0-4.32% and the average estimation error is 0.95% for all subjects. Experimental results show the presented system outperforms existing works and the individualized system significantly improves the performance of ESES quantification. The favorable results indicate that the proposed hybrid expert system for automatic ESES quantification is promising to support the diagnosis of ESES.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2022.3186942</identifier><identifier>PMID: 35763464</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biogeography ; Biogeography-based optimization ; Brain modeling ; Decision analysis ; Decision making ; Detectors ; Diagnosis ; EEG ; electrical status epilepticus during sleep ; Electroencephalography ; Encephalopathy ; Epilepsy ; Expert systems ; Feature extraction ; Firing pattern ; Hybrid systems ; Morphology ; Optimization ; Reliability analysis ; Sleep</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2022, Vol.30, p.1920-1930</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-460e8a8679c959e8b43ac0048863cc846a3b02ee85895cc07d7912c4401161073</citedby><cites>FETCH-LOGICAL-c438t-460e8a8679c959e8b43ac0048863cc846a3b02ee85895cc07d7912c4401161073</cites><orcidid>0000-0001-7587-3314 ; 0000-0002-0559-3904 ; 0000-0003-4591-321X ; 0000-0003-3720-718X ; 0000-0002-8821-1667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Zhao, Xian</creatorcontrib><creatorcontrib>Wang, Xinhua</creatorcontrib><creatorcontrib>Zhou, Yuanfeng</creatorcontrib><creatorcontrib>Wang, Yalin</creatorcontrib><creatorcontrib>Meng, Long</creatorcontrib><creatorcontrib>Fan, Jiahao</creatorcontrib><creatorcontrib>Shen, Ning</creatorcontrib><creatorcontrib>Zhou, Shuizhen</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><title>A Hybrid Expert System for Individualized Quantification of Electrical Status Epilepticus During Sleep Using Biogeography-Based Optimization</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><description>Electrical status epilepticus during sleep (ESES) is an epileptic encephalopathy in children with complex clinical manifestations. It is accompanied by specific electroencephalography (EEG) patterns of continuous spike and slow-waves. Quantifying such EEG patterns is critical to the diagnosis of ESES. While most of the existing automatic ESES quantification systems ignore the morphological variations of the signal as well as the individual variability among subjects. To address these issues, this paper presents a hybrid expert system that dedicates to mimicking the decision-making process of clinicians in ESES quantification by taking the morphological variations, individual variability, and medical knowledge into consideration. The proposed hybrid system not only offers a general scheme that could propel a semi-auto morphology analysis-based expert decision model to a fully automated ESES quantification with biogeography-based optimization (BBO), but also proposes a more precise individualized quantification system to involve the personalized characteristics by adopting an individualized parameters-selection framework. The feasibility and reliability of the proposed method are evaluated on a clinical dataset collected from twenty subjects at Children's Hospital of Fudan University, Shanghai, China. The estimation error for the individualized quantitative descriptor ESES is 0-4.32% and the average estimation error is 0.95% for all subjects. Experimental results show the presented system outperforms existing works and the individualized system significantly improves the performance of ESES quantification. The favorable results indicate that the proposed hybrid expert system for automatic ESES quantification is promising to support the diagnosis of ESES.</description><subject>Biogeography</subject><subject>Biogeography-based optimization</subject><subject>Brain modeling</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Detectors</subject><subject>Diagnosis</subject><subject>EEG</subject><subject>electrical status epilepticus during sleep</subject><subject>Electroencephalography</subject><subject>Encephalopathy</subject><subject>Epilepsy</subject><subject>Expert systems</subject><subject>Feature extraction</subject><subject>Firing pattern</subject><subject>Hybrid systems</subject><subject>Morphology</subject><subject>Optimization</subject><subject>Reliability analysis</subject><subject>Sleep</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpdkUtvEzEUhUcIRB_wB2BjiQ2bCdfPsZd9BBqpooK065HjuRMcTcaDPYNIf0N_NE5SdcHqHl195-henaL4QGFGKZgv99-XP-czBozNONXKCPaqOKVS6hIYhdd7zUUpOIOT4iylDQCtlKzeFidcVooLJU6Lpwtys1tF35D53wHjSJa7NOKWtCGSRd_4P76ZbOcfsSE_JtuPvvXOjj70JLRk3qEbY150ZDnacUpkPvgOh9G7rK-n6Ps1WXaIA3lIe33pwxrDOtrh1668tCmn3mV66x8Pme-KN63tEr5_nufFw9f5_dVNeXv3bXF1cVs6wfVYCgWorVaVcUYa1CvBrQMQWivunBbK8hUwRC21kc5B1VSGMicEUKooVPy8WBxzm2A39RD91sZdHayvD4sQ17WN-YkOa2hl08jWqJZKIVcrSyXTjrsKUSgFMmd9PmYNMfyeMI311ieHXWd7DFOqmdJUUwZgMvrpP3QTptjnTzNlqK4kB8gUO1IuhpQiti8HUqj3vdeH3ut97_Vz79n08WjyiPhiMBqMMYr_A9gdp-c</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhou, Wei</creator><creator>Zhao, Xian</creator><creator>Wang, Xinhua</creator><creator>Zhou, Yuanfeng</creator><creator>Wang, Yalin</creator><creator>Meng, Long</creator><creator>Fan, Jiahao</creator><creator>Shen, Ning</creator><creator>Zhou, Shuizhen</creator><creator>Chen, Wei</creator><creator>Chen, Chen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7587-3314</orcidid><orcidid>https://orcid.org/0000-0002-0559-3904</orcidid><orcidid>https://orcid.org/0000-0003-4591-321X</orcidid><orcidid>https://orcid.org/0000-0003-3720-718X</orcidid><orcidid>https://orcid.org/0000-0002-8821-1667</orcidid></search><sort><creationdate>2022</creationdate><title>A Hybrid Expert System for Individualized Quantification of Electrical Status Epilepticus During Sleep Using Biogeography-Based Optimization</title><author>Zhou, Wei ; Zhao, Xian ; Wang, Xinhua ; Zhou, Yuanfeng ; Wang, Yalin ; Meng, Long ; Fan, Jiahao ; Shen, Ning ; Zhou, Shuizhen ; Chen, Wei ; Chen, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-460e8a8679c959e8b43ac0048863cc846a3b02ee85895cc07d7912c4401161073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biogeography</topic><topic>Biogeography-based optimization</topic><topic>Brain modeling</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Detectors</topic><topic>Diagnosis</topic><topic>EEG</topic><topic>electrical status epilepticus during sleep</topic><topic>Electroencephalography</topic><topic>Encephalopathy</topic><topic>Epilepsy</topic><topic>Expert systems</topic><topic>Feature extraction</topic><topic>Firing pattern</topic><topic>Hybrid systems</topic><topic>Morphology</topic><topic>Optimization</topic><topic>Reliability analysis</topic><topic>Sleep</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Zhao, Xian</creatorcontrib><creatorcontrib>Wang, Xinhua</creatorcontrib><creatorcontrib>Zhou, Yuanfeng</creatorcontrib><creatorcontrib>Wang, Yalin</creatorcontrib><creatorcontrib>Meng, Long</creatorcontrib><creatorcontrib>Fan, Jiahao</creatorcontrib><creatorcontrib>Shen, Ning</creatorcontrib><creatorcontrib>Zhou, Shuizhen</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Wei</au><au>Zhao, Xian</au><au>Wang, Xinhua</au><au>Zhou, Yuanfeng</au><au>Wang, Yalin</au><au>Meng, Long</au><au>Fan, Jiahao</au><au>Shen, Ning</au><au>Zhou, Shuizhen</au><au>Chen, Wei</au><au>Chen, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Expert System for Individualized Quantification of Electrical Status Epilepticus During Sleep Using Biogeography-Based Optimization</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><date>2022</date><risdate>2022</risdate><volume>30</volume><spage>1920</spage><epage>1930</epage><pages>1920-1930</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Electrical status epilepticus during sleep (ESES) is an epileptic encephalopathy in children with complex clinical manifestations. It is accompanied by specific electroencephalography (EEG) patterns of continuous spike and slow-waves. Quantifying such EEG patterns is critical to the diagnosis of ESES. While most of the existing automatic ESES quantification systems ignore the morphological variations of the signal as well as the individual variability among subjects. To address these issues, this paper presents a hybrid expert system that dedicates to mimicking the decision-making process of clinicians in ESES quantification by taking the morphological variations, individual variability, and medical knowledge into consideration. The proposed hybrid system not only offers a general scheme that could propel a semi-auto morphology analysis-based expert decision model to a fully automated ESES quantification with biogeography-based optimization (BBO), but also proposes a more precise individualized quantification system to involve the personalized characteristics by adopting an individualized parameters-selection framework. The feasibility and reliability of the proposed method are evaluated on a clinical dataset collected from twenty subjects at Children's Hospital of Fudan University, Shanghai, China. The estimation error for the individualized quantitative descriptor ESES is 0-4.32% and the average estimation error is 0.95% for all subjects. Experimental results show the presented system outperforms existing works and the individualized system significantly improves the performance of ESES quantification. The favorable results indicate that the proposed hybrid expert system for automatic ESES quantification is promising to support the diagnosis of ESES.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>35763464</pmid><doi>10.1109/TNSRE.2022.3186942</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7587-3314</orcidid><orcidid>https://orcid.org/0000-0002-0559-3904</orcidid><orcidid>https://orcid.org/0000-0003-4591-321X</orcidid><orcidid>https://orcid.org/0000-0003-3720-718X</orcidid><orcidid>https://orcid.org/0000-0002-8821-1667</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2022, Vol.30, p.1920-1930 |
issn | 1534-4320 1558-0210 |
language | eng |
recordid | cdi_proquest_miscellaneous_2681812009 |
source | Alma/SFX Local Collection |
subjects | Biogeography Biogeography-based optimization Brain modeling Decision analysis Decision making Detectors Diagnosis EEG electrical status epilepticus during sleep Electroencephalography Encephalopathy Epilepsy Expert systems Feature extraction Firing pattern Hybrid systems Morphology Optimization Reliability analysis Sleep |
title | A Hybrid Expert System for Individualized Quantification of Electrical Status Epilepticus During Sleep Using Biogeography-Based Optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Expert%20System%20for%20Individualized%20Quantification%20of%20Electrical%20Status%20Epilepticus%20During%20Sleep%20Using%20Biogeography-Based%20Optimization&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Zhou,%20Wei&rft.date=2022&rft.volume=30&rft.spage=1920&rft.epage=1930&rft.pages=1920-1930&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2022.3186942&rft_dat=%3Cproquest_ieee_%3E2691875300%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-460e8a8679c959e8b43ac0048863cc846a3b02ee85895cc07d7912c4401161073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2691875300&rft_id=info:pmid/35763464&rft_ieee_id=9809996&rfr_iscdi=true |