Loading…
A comparison of artificial intelligence versus radiologists in the diagnosis of thyroid nodules using ultrasonography: a systematic review and meta-analysis
Background Thyroid nodules are common. Ultrasonography (US) is the first investigation for thyroid nodules. Artificial Intelligence (AI) is widely integrated into medical diagnosis to provide additional information. The primary objective of this study was to accumulate the pooled sensitivity and spe...
Saved in:
Published in: | European archives of oto-rhino-laryngology 2022-11, Vol.279 (11), p.5363-5373 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
Thyroid nodules are common. Ultrasonography (US) is the first investigation for thyroid nodules. Artificial Intelligence (AI) is widely integrated into medical diagnosis to provide additional information. The primary objective of this study was to accumulate the pooled sensitivity and specificity between all available AI and radiologists using thyroid US imaging. The secondary objective was to compare AI’s diagnostic performance to that of radiologists.
Materials and methods
A systematic review meta-analysis. PubMed, Scopus, Web of Science, and Cochrane Library data were searched for studies from inception until June 11, 2020.
Results
Twenty five studies were included in this meta-analysis. The pooled sensitivity and specificity of AI were 0.86 (95% CI 0.81–0.91) and 0.78 (95% CI 0.73–0.83), respectively. The pooled sensitivity and specificity of radiologists were 0.85 (95% CI 0.80–0.89) and 0.82 (95% CI 0.77–0.86), respectively. The accuracy of AI and radiologists is equivalent in terms of AUC [AI 0.89 (95% CI 0.86–0.92), radiologist 0.91 (95% CI 0.88–0.93)]. The diagnostic odd ratio (DOR) between AI 23.10 (95% CI 14.20–37.58) and radiologists 27.12 (95% CI 17.45–42.16) had no statistically significant difference (
P
= 0.56). Meta-regression analysis revealed that Deep Learning AI had significantly greater sensitivity and specificity than classic machine learning AI (
P |
---|---|
ISSN: | 0937-4477 1434-4726 |
DOI: | 10.1007/s00405-022-07436-1 |