Loading…

Pan-Cancer Detection and Typing by Mining Patterns in Large Genome-Wide Cell-Free DNA Sequencing Datasets

Abstract Background Cell-free DNA (cfDNA) analysis holds great promise for non-invasive cancer screening, diagnosis, and monitoring. We hypothesized that mining the patterns of cfDNA shallow whole-genome sequencing datasets from patients with cancer could improve cancer detection. Methods By applyin...

Full description

Saved in:
Bibliographic Details
Published in:Clinical chemistry (Baltimore, Md.) Md.), 2022-09, Vol.68 (9), p.1164-1176
Main Authors: Che, Huiwen, Jatsenko, Tatjana, Lenaerts, Liesbeth, Dehaspe, Luc, Vancoillie, Leen, Brison, Nathalie, Parijs, Ilse, Van Den Bogaert, Kris, Fischerova, Daniela, Heremans, Ruben, Landolfo, Chiara, Testa, Antonia Carla, Vanderstichele, Adriaan, Liekens, Lore, Pomella, Valentina, Wozniak, Agnieszka, Dooms, Christophe, Wauters, Els, Hatse, Sigrid, Punie, Kevin, Neven, Patrick, Wildiers, Hans, Tejpar, Sabine, Lambrechts, Diether, Coosemans, An, Timmerman, Dirk, Vandenberghe, Peter, Amant, Frédéric, Vermeesch, Joris Robert
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c354t-adc4fd4d05ba8807b45745ea4755b73bf9734796d59daa5a15b177334c7ad7b03
cites cdi_FETCH-LOGICAL-c354t-adc4fd4d05ba8807b45745ea4755b73bf9734796d59daa5a15b177334c7ad7b03
container_end_page 1176
container_issue 9
container_start_page 1164
container_title Clinical chemistry (Baltimore, Md.)
container_volume 68
creator Che, Huiwen
Jatsenko, Tatjana
Lenaerts, Liesbeth
Dehaspe, Luc
Vancoillie, Leen
Brison, Nathalie
Parijs, Ilse
Van Den Bogaert, Kris
Fischerova, Daniela
Heremans, Ruben
Landolfo, Chiara
Testa, Antonia Carla
Vanderstichele, Adriaan
Liekens, Lore
Pomella, Valentina
Wozniak, Agnieszka
Dooms, Christophe
Wauters, Els
Hatse, Sigrid
Punie, Kevin
Neven, Patrick
Wildiers, Hans
Tejpar, Sabine
Lambrechts, Diether
Coosemans, An
Timmerman, Dirk
Vandenberghe, Peter
Amant, Frédéric
Vermeesch, Joris Robert
description Abstract Background Cell-free DNA (cfDNA) analysis holds great promise for non-invasive cancer screening, diagnosis, and monitoring. We hypothesized that mining the patterns of cfDNA shallow whole-genome sequencing datasets from patients with cancer could improve cancer detection. Methods By applying unsupervised clustering and supervised machine learning on large cfDNA shallow whole-genome sequencing datasets from healthy individuals (n = 367) and patients with different hematological (n = 238) and solid malignancies (n = 320), we identified cfDNA signatures that enabled cancer detection and typing. Results Unsupervised clustering revealed cancer type-specific sub-grouping. Classification using a supervised machine learning model yielded accuracies of 96% and 65% in discriminating hematological and solid malignancies from healthy controls, respectively. The accuracy of disease type prediction was 85% and 70% for the hematological and solid cancers, respectively. The potential utility of managing a specific cancer was demonstrated by classifying benign from invasive and borderline adnexal masses with an area under the curve of 0.87 and 0.74, respectively. Conclusions This approach provides a generic analytical strategy for non-invasive pan-cancer detection and cancer type prediction.
doi_str_mv 10.1093/clinchem/hvac095
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2682785444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/clinchem/hvac095</oup_id><sourcerecordid>2682785444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-adc4fd4d05ba8807b45745ea4755b73bf9734796d59daa5a15b177334c7ad7b03</originalsourceid><addsrcrecordid>eNqFkMFLwzAUh4MoOKd3jzkKUpesSdMeR-emMHXgxGN5TV-3yJrWJBP239uxefb03oPve_z4EXLL2QNnWTzSW2P1BpvR5gc0y-QZGXAZsyiVCT8nA8ZYFmVcqEty5f1XfwqVJgNilmCjHKxGR6cYUAfTWgq2oqt9Z-yalnv6YuxhW0II6KynxtIFuDXSOdq2wejTVEhz3G6jmUOk09cJfcfvHVp90KYQwGPw1-Sihq3Hm9Mcko_Z4yp_ihZv8-d8soh0LEWIoNKirkTFZAlpylQppBISQSgpSxWXdaZiobKkklkFIIHLkisVx0IrqFTJ4iG5O_7tXNuH8KFojNd9OrDY7nwxTtKxSqUQokfZEdWu9d5hXXTONOD2BWfFodXir9Xi1Gqv3B-Vdtf9T_8CzCV8zQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682785444</pqid></control><display><type>article</type><title>Pan-Cancer Detection and Typing by Mining Patterns in Large Genome-Wide Cell-Free DNA Sequencing Datasets</title><source>Oxford Journals Online</source><creator>Che, Huiwen ; Jatsenko, Tatjana ; Lenaerts, Liesbeth ; Dehaspe, Luc ; Vancoillie, Leen ; Brison, Nathalie ; Parijs, Ilse ; Van Den Bogaert, Kris ; Fischerova, Daniela ; Heremans, Ruben ; Landolfo, Chiara ; Testa, Antonia Carla ; Vanderstichele, Adriaan ; Liekens, Lore ; Pomella, Valentina ; Wozniak, Agnieszka ; Dooms, Christophe ; Wauters, Els ; Hatse, Sigrid ; Punie, Kevin ; Neven, Patrick ; Wildiers, Hans ; Tejpar, Sabine ; Lambrechts, Diether ; Coosemans, An ; Timmerman, Dirk ; Vandenberghe, Peter ; Amant, Frédéric ; Vermeesch, Joris Robert</creator><creatorcontrib>Che, Huiwen ; Jatsenko, Tatjana ; Lenaerts, Liesbeth ; Dehaspe, Luc ; Vancoillie, Leen ; Brison, Nathalie ; Parijs, Ilse ; Van Den Bogaert, Kris ; Fischerova, Daniela ; Heremans, Ruben ; Landolfo, Chiara ; Testa, Antonia Carla ; Vanderstichele, Adriaan ; Liekens, Lore ; Pomella, Valentina ; Wozniak, Agnieszka ; Dooms, Christophe ; Wauters, Els ; Hatse, Sigrid ; Punie, Kevin ; Neven, Patrick ; Wildiers, Hans ; Tejpar, Sabine ; Lambrechts, Diether ; Coosemans, An ; Timmerman, Dirk ; Vandenberghe, Peter ; Amant, Frédéric ; Vermeesch, Joris Robert</creatorcontrib><description>Abstract Background Cell-free DNA (cfDNA) analysis holds great promise for non-invasive cancer screening, diagnosis, and monitoring. We hypothesized that mining the patterns of cfDNA shallow whole-genome sequencing datasets from patients with cancer could improve cancer detection. Methods By applying unsupervised clustering and supervised machine learning on large cfDNA shallow whole-genome sequencing datasets from healthy individuals (n = 367) and patients with different hematological (n = 238) and solid malignancies (n = 320), we identified cfDNA signatures that enabled cancer detection and typing. Results Unsupervised clustering revealed cancer type-specific sub-grouping. Classification using a supervised machine learning model yielded accuracies of 96% and 65% in discriminating hematological and solid malignancies from healthy controls, respectively. The accuracy of disease type prediction was 85% and 70% for the hematological and solid cancers, respectively. The potential utility of managing a specific cancer was demonstrated by classifying benign from invasive and borderline adnexal masses with an area under the curve of 0.87 and 0.74, respectively. Conclusions This approach provides a generic analytical strategy for non-invasive pan-cancer detection and cancer type prediction.</description><identifier>ISSN: 0009-9147</identifier><identifier>EISSN: 1530-8561</identifier><identifier>DOI: 10.1093/clinchem/hvac095</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Clinical chemistry (Baltimore, Md.), 2022-09, Vol.68 (9), p.1164-1176</ispartof><rights>American Association for Clinical Chemistry 2022. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-adc4fd4d05ba8807b45745ea4755b73bf9734796d59daa5a15b177334c7ad7b03</citedby><cites>FETCH-LOGICAL-c354t-adc4fd4d05ba8807b45745ea4755b73bf9734796d59daa5a15b177334c7ad7b03</cites><orcidid>0000-0002-3071-1191 ; 0000-0002-3651-069X ; 0000-0001-9726-144X ; 0000-0001-8990-7837 ; 0000-0002-3707-6645 ; 0000-0003-4719-1935 ; 0000-0002-7321-4339 ; 0000-0001-6055-2569 ; 0000-0002-1162-7963 ; 0000-0003-4945-8867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Che, Huiwen</creatorcontrib><creatorcontrib>Jatsenko, Tatjana</creatorcontrib><creatorcontrib>Lenaerts, Liesbeth</creatorcontrib><creatorcontrib>Dehaspe, Luc</creatorcontrib><creatorcontrib>Vancoillie, Leen</creatorcontrib><creatorcontrib>Brison, Nathalie</creatorcontrib><creatorcontrib>Parijs, Ilse</creatorcontrib><creatorcontrib>Van Den Bogaert, Kris</creatorcontrib><creatorcontrib>Fischerova, Daniela</creatorcontrib><creatorcontrib>Heremans, Ruben</creatorcontrib><creatorcontrib>Landolfo, Chiara</creatorcontrib><creatorcontrib>Testa, Antonia Carla</creatorcontrib><creatorcontrib>Vanderstichele, Adriaan</creatorcontrib><creatorcontrib>Liekens, Lore</creatorcontrib><creatorcontrib>Pomella, Valentina</creatorcontrib><creatorcontrib>Wozniak, Agnieszka</creatorcontrib><creatorcontrib>Dooms, Christophe</creatorcontrib><creatorcontrib>Wauters, Els</creatorcontrib><creatorcontrib>Hatse, Sigrid</creatorcontrib><creatorcontrib>Punie, Kevin</creatorcontrib><creatorcontrib>Neven, Patrick</creatorcontrib><creatorcontrib>Wildiers, Hans</creatorcontrib><creatorcontrib>Tejpar, Sabine</creatorcontrib><creatorcontrib>Lambrechts, Diether</creatorcontrib><creatorcontrib>Coosemans, An</creatorcontrib><creatorcontrib>Timmerman, Dirk</creatorcontrib><creatorcontrib>Vandenberghe, Peter</creatorcontrib><creatorcontrib>Amant, Frédéric</creatorcontrib><creatorcontrib>Vermeesch, Joris Robert</creatorcontrib><title>Pan-Cancer Detection and Typing by Mining Patterns in Large Genome-Wide Cell-Free DNA Sequencing Datasets</title><title>Clinical chemistry (Baltimore, Md.)</title><description>Abstract Background Cell-free DNA (cfDNA) analysis holds great promise for non-invasive cancer screening, diagnosis, and monitoring. We hypothesized that mining the patterns of cfDNA shallow whole-genome sequencing datasets from patients with cancer could improve cancer detection. Methods By applying unsupervised clustering and supervised machine learning on large cfDNA shallow whole-genome sequencing datasets from healthy individuals (n = 367) and patients with different hematological (n = 238) and solid malignancies (n = 320), we identified cfDNA signatures that enabled cancer detection and typing. Results Unsupervised clustering revealed cancer type-specific sub-grouping. Classification using a supervised machine learning model yielded accuracies of 96% and 65% in discriminating hematological and solid malignancies from healthy controls, respectively. The accuracy of disease type prediction was 85% and 70% for the hematological and solid cancers, respectively. The potential utility of managing a specific cancer was demonstrated by classifying benign from invasive and borderline adnexal masses with an area under the curve of 0.87 and 0.74, respectively. Conclusions This approach provides a generic analytical strategy for non-invasive pan-cancer detection and cancer type prediction.</description><issn>0009-9147</issn><issn>1530-8561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkMFLwzAUh4MoOKd3jzkKUpesSdMeR-emMHXgxGN5TV-3yJrWJBP239uxefb03oPve_z4EXLL2QNnWTzSW2P1BpvR5gc0y-QZGXAZsyiVCT8nA8ZYFmVcqEty5f1XfwqVJgNilmCjHKxGR6cYUAfTWgq2oqt9Z-yalnv6YuxhW0II6KynxtIFuDXSOdq2wejTVEhz3G6jmUOk09cJfcfvHVp90KYQwGPw1-Sihq3Hm9Mcko_Z4yp_ihZv8-d8soh0LEWIoNKirkTFZAlpylQppBISQSgpSxWXdaZiobKkklkFIIHLkisVx0IrqFTJ4iG5O_7tXNuH8KFojNd9OrDY7nwxTtKxSqUQokfZEdWu9d5hXXTONOD2BWfFodXir9Xi1Gqv3B-Vdtf9T_8CzCV8zQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Che, Huiwen</creator><creator>Jatsenko, Tatjana</creator><creator>Lenaerts, Liesbeth</creator><creator>Dehaspe, Luc</creator><creator>Vancoillie, Leen</creator><creator>Brison, Nathalie</creator><creator>Parijs, Ilse</creator><creator>Van Den Bogaert, Kris</creator><creator>Fischerova, Daniela</creator><creator>Heremans, Ruben</creator><creator>Landolfo, Chiara</creator><creator>Testa, Antonia Carla</creator><creator>Vanderstichele, Adriaan</creator><creator>Liekens, Lore</creator><creator>Pomella, Valentina</creator><creator>Wozniak, Agnieszka</creator><creator>Dooms, Christophe</creator><creator>Wauters, Els</creator><creator>Hatse, Sigrid</creator><creator>Punie, Kevin</creator><creator>Neven, Patrick</creator><creator>Wildiers, Hans</creator><creator>Tejpar, Sabine</creator><creator>Lambrechts, Diether</creator><creator>Coosemans, An</creator><creator>Timmerman, Dirk</creator><creator>Vandenberghe, Peter</creator><creator>Amant, Frédéric</creator><creator>Vermeesch, Joris Robert</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3071-1191</orcidid><orcidid>https://orcid.org/0000-0002-3651-069X</orcidid><orcidid>https://orcid.org/0000-0001-9726-144X</orcidid><orcidid>https://orcid.org/0000-0001-8990-7837</orcidid><orcidid>https://orcid.org/0000-0002-3707-6645</orcidid><orcidid>https://orcid.org/0000-0003-4719-1935</orcidid><orcidid>https://orcid.org/0000-0002-7321-4339</orcidid><orcidid>https://orcid.org/0000-0001-6055-2569</orcidid><orcidid>https://orcid.org/0000-0002-1162-7963</orcidid><orcidid>https://orcid.org/0000-0003-4945-8867</orcidid></search><sort><creationdate>20220901</creationdate><title>Pan-Cancer Detection and Typing by Mining Patterns in Large Genome-Wide Cell-Free DNA Sequencing Datasets</title><author>Che, Huiwen ; Jatsenko, Tatjana ; Lenaerts, Liesbeth ; Dehaspe, Luc ; Vancoillie, Leen ; Brison, Nathalie ; Parijs, Ilse ; Van Den Bogaert, Kris ; Fischerova, Daniela ; Heremans, Ruben ; Landolfo, Chiara ; Testa, Antonia Carla ; Vanderstichele, Adriaan ; Liekens, Lore ; Pomella, Valentina ; Wozniak, Agnieszka ; Dooms, Christophe ; Wauters, Els ; Hatse, Sigrid ; Punie, Kevin ; Neven, Patrick ; Wildiers, Hans ; Tejpar, Sabine ; Lambrechts, Diether ; Coosemans, An ; Timmerman, Dirk ; Vandenberghe, Peter ; Amant, Frédéric ; Vermeesch, Joris Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-adc4fd4d05ba8807b45745ea4755b73bf9734796d59daa5a15b177334c7ad7b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Che, Huiwen</creatorcontrib><creatorcontrib>Jatsenko, Tatjana</creatorcontrib><creatorcontrib>Lenaerts, Liesbeth</creatorcontrib><creatorcontrib>Dehaspe, Luc</creatorcontrib><creatorcontrib>Vancoillie, Leen</creatorcontrib><creatorcontrib>Brison, Nathalie</creatorcontrib><creatorcontrib>Parijs, Ilse</creatorcontrib><creatorcontrib>Van Den Bogaert, Kris</creatorcontrib><creatorcontrib>Fischerova, Daniela</creatorcontrib><creatorcontrib>Heremans, Ruben</creatorcontrib><creatorcontrib>Landolfo, Chiara</creatorcontrib><creatorcontrib>Testa, Antonia Carla</creatorcontrib><creatorcontrib>Vanderstichele, Adriaan</creatorcontrib><creatorcontrib>Liekens, Lore</creatorcontrib><creatorcontrib>Pomella, Valentina</creatorcontrib><creatorcontrib>Wozniak, Agnieszka</creatorcontrib><creatorcontrib>Dooms, Christophe</creatorcontrib><creatorcontrib>Wauters, Els</creatorcontrib><creatorcontrib>Hatse, Sigrid</creatorcontrib><creatorcontrib>Punie, Kevin</creatorcontrib><creatorcontrib>Neven, Patrick</creatorcontrib><creatorcontrib>Wildiers, Hans</creatorcontrib><creatorcontrib>Tejpar, Sabine</creatorcontrib><creatorcontrib>Lambrechts, Diether</creatorcontrib><creatorcontrib>Coosemans, An</creatorcontrib><creatorcontrib>Timmerman, Dirk</creatorcontrib><creatorcontrib>Vandenberghe, Peter</creatorcontrib><creatorcontrib>Amant, Frédéric</creatorcontrib><creatorcontrib>Vermeesch, Joris Robert</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical chemistry (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Che, Huiwen</au><au>Jatsenko, Tatjana</au><au>Lenaerts, Liesbeth</au><au>Dehaspe, Luc</au><au>Vancoillie, Leen</au><au>Brison, Nathalie</au><au>Parijs, Ilse</au><au>Van Den Bogaert, Kris</au><au>Fischerova, Daniela</au><au>Heremans, Ruben</au><au>Landolfo, Chiara</au><au>Testa, Antonia Carla</au><au>Vanderstichele, Adriaan</au><au>Liekens, Lore</au><au>Pomella, Valentina</au><au>Wozniak, Agnieszka</au><au>Dooms, Christophe</au><au>Wauters, Els</au><au>Hatse, Sigrid</au><au>Punie, Kevin</au><au>Neven, Patrick</au><au>Wildiers, Hans</au><au>Tejpar, Sabine</au><au>Lambrechts, Diether</au><au>Coosemans, An</au><au>Timmerman, Dirk</au><au>Vandenberghe, Peter</au><au>Amant, Frédéric</au><au>Vermeesch, Joris Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pan-Cancer Detection and Typing by Mining Patterns in Large Genome-Wide Cell-Free DNA Sequencing Datasets</atitle><jtitle>Clinical chemistry (Baltimore, Md.)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>68</volume><issue>9</issue><spage>1164</spage><epage>1176</epage><pages>1164-1176</pages><issn>0009-9147</issn><eissn>1530-8561</eissn><abstract>Abstract Background Cell-free DNA (cfDNA) analysis holds great promise for non-invasive cancer screening, diagnosis, and monitoring. We hypothesized that mining the patterns of cfDNA shallow whole-genome sequencing datasets from patients with cancer could improve cancer detection. Methods By applying unsupervised clustering and supervised machine learning on large cfDNA shallow whole-genome sequencing datasets from healthy individuals (n = 367) and patients with different hematological (n = 238) and solid malignancies (n = 320), we identified cfDNA signatures that enabled cancer detection and typing. Results Unsupervised clustering revealed cancer type-specific sub-grouping. Classification using a supervised machine learning model yielded accuracies of 96% and 65% in discriminating hematological and solid malignancies from healthy controls, respectively. The accuracy of disease type prediction was 85% and 70% for the hematological and solid cancers, respectively. The potential utility of managing a specific cancer was demonstrated by classifying benign from invasive and borderline adnexal masses with an area under the curve of 0.87 and 0.74, respectively. Conclusions This approach provides a generic analytical strategy for non-invasive pan-cancer detection and cancer type prediction.</abstract><pub>Oxford University Press</pub><doi>10.1093/clinchem/hvac095</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3071-1191</orcidid><orcidid>https://orcid.org/0000-0002-3651-069X</orcidid><orcidid>https://orcid.org/0000-0001-9726-144X</orcidid><orcidid>https://orcid.org/0000-0001-8990-7837</orcidid><orcidid>https://orcid.org/0000-0002-3707-6645</orcidid><orcidid>https://orcid.org/0000-0003-4719-1935</orcidid><orcidid>https://orcid.org/0000-0002-7321-4339</orcidid><orcidid>https://orcid.org/0000-0001-6055-2569</orcidid><orcidid>https://orcid.org/0000-0002-1162-7963</orcidid><orcidid>https://orcid.org/0000-0003-4945-8867</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-9147
ispartof Clinical chemistry (Baltimore, Md.), 2022-09, Vol.68 (9), p.1164-1176
issn 0009-9147
1530-8561
language eng
recordid cdi_proquest_miscellaneous_2682785444
source Oxford Journals Online
title Pan-Cancer Detection and Typing by Mining Patterns in Large Genome-Wide Cell-Free DNA Sequencing Datasets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pan-Cancer%20Detection%20and%20Typing%20by%20Mining%20Patterns%20in%20Large%20Genome-Wide%20Cell-Free%20DNA%20Sequencing%20Datasets&rft.jtitle=Clinical%20chemistry%20(Baltimore,%20Md.)&rft.au=Che,%20Huiwen&rft.date=2022-09-01&rft.volume=68&rft.issue=9&rft.spage=1164&rft.epage=1176&rft.pages=1164-1176&rft.issn=0009-9147&rft.eissn=1530-8561&rft_id=info:doi/10.1093/clinchem/hvac095&rft_dat=%3Cproquest_cross%3E2682785444%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-adc4fd4d05ba8807b45745ea4755b73bf9734796d59daa5a15b177334c7ad7b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2682785444&rft_id=info:pmid/&rft_oup_id=10.1093/clinchem/hvac095&rfr_iscdi=true