Loading…
Pan-Cancer Detection and Typing by Mining Patterns in Large Genome-Wide Cell-Free DNA Sequencing Datasets
Abstract Background Cell-free DNA (cfDNA) analysis holds great promise for non-invasive cancer screening, diagnosis, and monitoring. We hypothesized that mining the patterns of cfDNA shallow whole-genome sequencing datasets from patients with cancer could improve cancer detection. Methods By applyin...
Saved in:
Published in: | Clinical chemistry (Baltimore, Md.) Md.), 2022-09, Vol.68 (9), p.1164-1176 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c354t-adc4fd4d05ba8807b45745ea4755b73bf9734796d59daa5a15b177334c7ad7b03 |
---|---|
cites | cdi_FETCH-LOGICAL-c354t-adc4fd4d05ba8807b45745ea4755b73bf9734796d59daa5a15b177334c7ad7b03 |
container_end_page | 1176 |
container_issue | 9 |
container_start_page | 1164 |
container_title | Clinical chemistry (Baltimore, Md.) |
container_volume | 68 |
creator | Che, Huiwen Jatsenko, Tatjana Lenaerts, Liesbeth Dehaspe, Luc Vancoillie, Leen Brison, Nathalie Parijs, Ilse Van Den Bogaert, Kris Fischerova, Daniela Heremans, Ruben Landolfo, Chiara Testa, Antonia Carla Vanderstichele, Adriaan Liekens, Lore Pomella, Valentina Wozniak, Agnieszka Dooms, Christophe Wauters, Els Hatse, Sigrid Punie, Kevin Neven, Patrick Wildiers, Hans Tejpar, Sabine Lambrechts, Diether Coosemans, An Timmerman, Dirk Vandenberghe, Peter Amant, Frédéric Vermeesch, Joris Robert |
description | Abstract
Background
Cell-free DNA (cfDNA) analysis holds great promise for non-invasive cancer screening, diagnosis, and monitoring. We hypothesized that mining the patterns of cfDNA shallow whole-genome sequencing datasets from patients with cancer could improve cancer detection.
Methods
By applying unsupervised clustering and supervised machine learning on large cfDNA shallow whole-genome sequencing datasets from healthy individuals (n = 367) and patients with different hematological (n = 238) and solid malignancies (n = 320), we identified cfDNA signatures that enabled cancer detection and typing.
Results
Unsupervised clustering revealed cancer type-specific sub-grouping. Classification using a supervised machine learning model yielded accuracies of 96% and 65% in discriminating hematological and solid malignancies from healthy controls, respectively. The accuracy of disease type prediction was 85% and 70% for the hematological and solid cancers, respectively. The potential utility of managing a specific cancer was demonstrated by classifying benign from invasive and borderline adnexal masses with an area under the curve of 0.87 and 0.74, respectively.
Conclusions
This approach provides a generic analytical strategy for non-invasive pan-cancer detection and cancer type prediction. |
doi_str_mv | 10.1093/clinchem/hvac095 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2682785444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/clinchem/hvac095</oup_id><sourcerecordid>2682785444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-adc4fd4d05ba8807b45745ea4755b73bf9734796d59daa5a15b177334c7ad7b03</originalsourceid><addsrcrecordid>eNqFkMFLwzAUh4MoOKd3jzkKUpesSdMeR-emMHXgxGN5TV-3yJrWJBP239uxefb03oPve_z4EXLL2QNnWTzSW2P1BpvR5gc0y-QZGXAZsyiVCT8nA8ZYFmVcqEty5f1XfwqVJgNilmCjHKxGR6cYUAfTWgq2oqt9Z-yalnv6YuxhW0II6KynxtIFuDXSOdq2wejTVEhz3G6jmUOk09cJfcfvHVp90KYQwGPw1-Sihq3Hm9Mcko_Z4yp_ihZv8-d8soh0LEWIoNKirkTFZAlpylQppBISQSgpSxWXdaZiobKkklkFIIHLkisVx0IrqFTJ4iG5O_7tXNuH8KFojNd9OrDY7nwxTtKxSqUQokfZEdWu9d5hXXTONOD2BWfFodXir9Xi1Gqv3B-Vdtf9T_8CzCV8zQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682785444</pqid></control><display><type>article</type><title>Pan-Cancer Detection and Typing by Mining Patterns in Large Genome-Wide Cell-Free DNA Sequencing Datasets</title><source>Oxford Journals Online</source><creator>Che, Huiwen ; Jatsenko, Tatjana ; Lenaerts, Liesbeth ; Dehaspe, Luc ; Vancoillie, Leen ; Brison, Nathalie ; Parijs, Ilse ; Van Den Bogaert, Kris ; Fischerova, Daniela ; Heremans, Ruben ; Landolfo, Chiara ; Testa, Antonia Carla ; Vanderstichele, Adriaan ; Liekens, Lore ; Pomella, Valentina ; Wozniak, Agnieszka ; Dooms, Christophe ; Wauters, Els ; Hatse, Sigrid ; Punie, Kevin ; Neven, Patrick ; Wildiers, Hans ; Tejpar, Sabine ; Lambrechts, Diether ; Coosemans, An ; Timmerman, Dirk ; Vandenberghe, Peter ; Amant, Frédéric ; Vermeesch, Joris Robert</creator><creatorcontrib>Che, Huiwen ; Jatsenko, Tatjana ; Lenaerts, Liesbeth ; Dehaspe, Luc ; Vancoillie, Leen ; Brison, Nathalie ; Parijs, Ilse ; Van Den Bogaert, Kris ; Fischerova, Daniela ; Heremans, Ruben ; Landolfo, Chiara ; Testa, Antonia Carla ; Vanderstichele, Adriaan ; Liekens, Lore ; Pomella, Valentina ; Wozniak, Agnieszka ; Dooms, Christophe ; Wauters, Els ; Hatse, Sigrid ; Punie, Kevin ; Neven, Patrick ; Wildiers, Hans ; Tejpar, Sabine ; Lambrechts, Diether ; Coosemans, An ; Timmerman, Dirk ; Vandenberghe, Peter ; Amant, Frédéric ; Vermeesch, Joris Robert</creatorcontrib><description>Abstract
Background
Cell-free DNA (cfDNA) analysis holds great promise for non-invasive cancer screening, diagnosis, and monitoring. We hypothesized that mining the patterns of cfDNA shallow whole-genome sequencing datasets from patients with cancer could improve cancer detection.
Methods
By applying unsupervised clustering and supervised machine learning on large cfDNA shallow whole-genome sequencing datasets from healthy individuals (n = 367) and patients with different hematological (n = 238) and solid malignancies (n = 320), we identified cfDNA signatures that enabled cancer detection and typing.
Results
Unsupervised clustering revealed cancer type-specific sub-grouping. Classification using a supervised machine learning model yielded accuracies of 96% and 65% in discriminating hematological and solid malignancies from healthy controls, respectively. The accuracy of disease type prediction was 85% and 70% for the hematological and solid cancers, respectively. The potential utility of managing a specific cancer was demonstrated by classifying benign from invasive and borderline adnexal masses with an area under the curve of 0.87 and 0.74, respectively.
Conclusions
This approach provides a generic analytical strategy for non-invasive pan-cancer detection and cancer type prediction.</description><identifier>ISSN: 0009-9147</identifier><identifier>EISSN: 1530-8561</identifier><identifier>DOI: 10.1093/clinchem/hvac095</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Clinical chemistry (Baltimore, Md.), 2022-09, Vol.68 (9), p.1164-1176</ispartof><rights>American Association for Clinical Chemistry 2022. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-adc4fd4d05ba8807b45745ea4755b73bf9734796d59daa5a15b177334c7ad7b03</citedby><cites>FETCH-LOGICAL-c354t-adc4fd4d05ba8807b45745ea4755b73bf9734796d59daa5a15b177334c7ad7b03</cites><orcidid>0000-0002-3071-1191 ; 0000-0002-3651-069X ; 0000-0001-9726-144X ; 0000-0001-8990-7837 ; 0000-0002-3707-6645 ; 0000-0003-4719-1935 ; 0000-0002-7321-4339 ; 0000-0001-6055-2569 ; 0000-0002-1162-7963 ; 0000-0003-4945-8867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Che, Huiwen</creatorcontrib><creatorcontrib>Jatsenko, Tatjana</creatorcontrib><creatorcontrib>Lenaerts, Liesbeth</creatorcontrib><creatorcontrib>Dehaspe, Luc</creatorcontrib><creatorcontrib>Vancoillie, Leen</creatorcontrib><creatorcontrib>Brison, Nathalie</creatorcontrib><creatorcontrib>Parijs, Ilse</creatorcontrib><creatorcontrib>Van Den Bogaert, Kris</creatorcontrib><creatorcontrib>Fischerova, Daniela</creatorcontrib><creatorcontrib>Heremans, Ruben</creatorcontrib><creatorcontrib>Landolfo, Chiara</creatorcontrib><creatorcontrib>Testa, Antonia Carla</creatorcontrib><creatorcontrib>Vanderstichele, Adriaan</creatorcontrib><creatorcontrib>Liekens, Lore</creatorcontrib><creatorcontrib>Pomella, Valentina</creatorcontrib><creatorcontrib>Wozniak, Agnieszka</creatorcontrib><creatorcontrib>Dooms, Christophe</creatorcontrib><creatorcontrib>Wauters, Els</creatorcontrib><creatorcontrib>Hatse, Sigrid</creatorcontrib><creatorcontrib>Punie, Kevin</creatorcontrib><creatorcontrib>Neven, Patrick</creatorcontrib><creatorcontrib>Wildiers, Hans</creatorcontrib><creatorcontrib>Tejpar, Sabine</creatorcontrib><creatorcontrib>Lambrechts, Diether</creatorcontrib><creatorcontrib>Coosemans, An</creatorcontrib><creatorcontrib>Timmerman, Dirk</creatorcontrib><creatorcontrib>Vandenberghe, Peter</creatorcontrib><creatorcontrib>Amant, Frédéric</creatorcontrib><creatorcontrib>Vermeesch, Joris Robert</creatorcontrib><title>Pan-Cancer Detection and Typing by Mining Patterns in Large Genome-Wide Cell-Free DNA Sequencing Datasets</title><title>Clinical chemistry (Baltimore, Md.)</title><description>Abstract
Background
Cell-free DNA (cfDNA) analysis holds great promise for non-invasive cancer screening, diagnosis, and monitoring. We hypothesized that mining the patterns of cfDNA shallow whole-genome sequencing datasets from patients with cancer could improve cancer detection.
Methods
By applying unsupervised clustering and supervised machine learning on large cfDNA shallow whole-genome sequencing datasets from healthy individuals (n = 367) and patients with different hematological (n = 238) and solid malignancies (n = 320), we identified cfDNA signatures that enabled cancer detection and typing.
Results
Unsupervised clustering revealed cancer type-specific sub-grouping. Classification using a supervised machine learning model yielded accuracies of 96% and 65% in discriminating hematological and solid malignancies from healthy controls, respectively. The accuracy of disease type prediction was 85% and 70% for the hematological and solid cancers, respectively. The potential utility of managing a specific cancer was demonstrated by classifying benign from invasive and borderline adnexal masses with an area under the curve of 0.87 and 0.74, respectively.
Conclusions
This approach provides a generic analytical strategy for non-invasive pan-cancer detection and cancer type prediction.</description><issn>0009-9147</issn><issn>1530-8561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkMFLwzAUh4MoOKd3jzkKUpesSdMeR-emMHXgxGN5TV-3yJrWJBP239uxefb03oPve_z4EXLL2QNnWTzSW2P1BpvR5gc0y-QZGXAZsyiVCT8nA8ZYFmVcqEty5f1XfwqVJgNilmCjHKxGR6cYUAfTWgq2oqt9Z-yalnv6YuxhW0II6KynxtIFuDXSOdq2wejTVEhz3G6jmUOk09cJfcfvHVp90KYQwGPw1-Sihq3Hm9Mcko_Z4yp_ihZv8-d8soh0LEWIoNKirkTFZAlpylQppBISQSgpSxWXdaZiobKkklkFIIHLkisVx0IrqFTJ4iG5O_7tXNuH8KFojNd9OrDY7nwxTtKxSqUQokfZEdWu9d5hXXTONOD2BWfFodXir9Xi1Gqv3B-Vdtf9T_8CzCV8zQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Che, Huiwen</creator><creator>Jatsenko, Tatjana</creator><creator>Lenaerts, Liesbeth</creator><creator>Dehaspe, Luc</creator><creator>Vancoillie, Leen</creator><creator>Brison, Nathalie</creator><creator>Parijs, Ilse</creator><creator>Van Den Bogaert, Kris</creator><creator>Fischerova, Daniela</creator><creator>Heremans, Ruben</creator><creator>Landolfo, Chiara</creator><creator>Testa, Antonia Carla</creator><creator>Vanderstichele, Adriaan</creator><creator>Liekens, Lore</creator><creator>Pomella, Valentina</creator><creator>Wozniak, Agnieszka</creator><creator>Dooms, Christophe</creator><creator>Wauters, Els</creator><creator>Hatse, Sigrid</creator><creator>Punie, Kevin</creator><creator>Neven, Patrick</creator><creator>Wildiers, Hans</creator><creator>Tejpar, Sabine</creator><creator>Lambrechts, Diether</creator><creator>Coosemans, An</creator><creator>Timmerman, Dirk</creator><creator>Vandenberghe, Peter</creator><creator>Amant, Frédéric</creator><creator>Vermeesch, Joris Robert</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3071-1191</orcidid><orcidid>https://orcid.org/0000-0002-3651-069X</orcidid><orcidid>https://orcid.org/0000-0001-9726-144X</orcidid><orcidid>https://orcid.org/0000-0001-8990-7837</orcidid><orcidid>https://orcid.org/0000-0002-3707-6645</orcidid><orcidid>https://orcid.org/0000-0003-4719-1935</orcidid><orcidid>https://orcid.org/0000-0002-7321-4339</orcidid><orcidid>https://orcid.org/0000-0001-6055-2569</orcidid><orcidid>https://orcid.org/0000-0002-1162-7963</orcidid><orcidid>https://orcid.org/0000-0003-4945-8867</orcidid></search><sort><creationdate>20220901</creationdate><title>Pan-Cancer Detection and Typing by Mining Patterns in Large Genome-Wide Cell-Free DNA Sequencing Datasets</title><author>Che, Huiwen ; Jatsenko, Tatjana ; Lenaerts, Liesbeth ; Dehaspe, Luc ; Vancoillie, Leen ; Brison, Nathalie ; Parijs, Ilse ; Van Den Bogaert, Kris ; Fischerova, Daniela ; Heremans, Ruben ; Landolfo, Chiara ; Testa, Antonia Carla ; Vanderstichele, Adriaan ; Liekens, Lore ; Pomella, Valentina ; Wozniak, Agnieszka ; Dooms, Christophe ; Wauters, Els ; Hatse, Sigrid ; Punie, Kevin ; Neven, Patrick ; Wildiers, Hans ; Tejpar, Sabine ; Lambrechts, Diether ; Coosemans, An ; Timmerman, Dirk ; Vandenberghe, Peter ; Amant, Frédéric ; Vermeesch, Joris Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-adc4fd4d05ba8807b45745ea4755b73bf9734796d59daa5a15b177334c7ad7b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Che, Huiwen</creatorcontrib><creatorcontrib>Jatsenko, Tatjana</creatorcontrib><creatorcontrib>Lenaerts, Liesbeth</creatorcontrib><creatorcontrib>Dehaspe, Luc</creatorcontrib><creatorcontrib>Vancoillie, Leen</creatorcontrib><creatorcontrib>Brison, Nathalie</creatorcontrib><creatorcontrib>Parijs, Ilse</creatorcontrib><creatorcontrib>Van Den Bogaert, Kris</creatorcontrib><creatorcontrib>Fischerova, Daniela</creatorcontrib><creatorcontrib>Heremans, Ruben</creatorcontrib><creatorcontrib>Landolfo, Chiara</creatorcontrib><creatorcontrib>Testa, Antonia Carla</creatorcontrib><creatorcontrib>Vanderstichele, Adriaan</creatorcontrib><creatorcontrib>Liekens, Lore</creatorcontrib><creatorcontrib>Pomella, Valentina</creatorcontrib><creatorcontrib>Wozniak, Agnieszka</creatorcontrib><creatorcontrib>Dooms, Christophe</creatorcontrib><creatorcontrib>Wauters, Els</creatorcontrib><creatorcontrib>Hatse, Sigrid</creatorcontrib><creatorcontrib>Punie, Kevin</creatorcontrib><creatorcontrib>Neven, Patrick</creatorcontrib><creatorcontrib>Wildiers, Hans</creatorcontrib><creatorcontrib>Tejpar, Sabine</creatorcontrib><creatorcontrib>Lambrechts, Diether</creatorcontrib><creatorcontrib>Coosemans, An</creatorcontrib><creatorcontrib>Timmerman, Dirk</creatorcontrib><creatorcontrib>Vandenberghe, Peter</creatorcontrib><creatorcontrib>Amant, Frédéric</creatorcontrib><creatorcontrib>Vermeesch, Joris Robert</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical chemistry (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Che, Huiwen</au><au>Jatsenko, Tatjana</au><au>Lenaerts, Liesbeth</au><au>Dehaspe, Luc</au><au>Vancoillie, Leen</au><au>Brison, Nathalie</au><au>Parijs, Ilse</au><au>Van Den Bogaert, Kris</au><au>Fischerova, Daniela</au><au>Heremans, Ruben</au><au>Landolfo, Chiara</au><au>Testa, Antonia Carla</au><au>Vanderstichele, Adriaan</au><au>Liekens, Lore</au><au>Pomella, Valentina</au><au>Wozniak, Agnieszka</au><au>Dooms, Christophe</au><au>Wauters, Els</au><au>Hatse, Sigrid</au><au>Punie, Kevin</au><au>Neven, Patrick</au><au>Wildiers, Hans</au><au>Tejpar, Sabine</au><au>Lambrechts, Diether</au><au>Coosemans, An</au><au>Timmerman, Dirk</au><au>Vandenberghe, Peter</au><au>Amant, Frédéric</au><au>Vermeesch, Joris Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pan-Cancer Detection and Typing by Mining Patterns in Large Genome-Wide Cell-Free DNA Sequencing Datasets</atitle><jtitle>Clinical chemistry (Baltimore, Md.)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>68</volume><issue>9</issue><spage>1164</spage><epage>1176</epage><pages>1164-1176</pages><issn>0009-9147</issn><eissn>1530-8561</eissn><abstract>Abstract
Background
Cell-free DNA (cfDNA) analysis holds great promise for non-invasive cancer screening, diagnosis, and monitoring. We hypothesized that mining the patterns of cfDNA shallow whole-genome sequencing datasets from patients with cancer could improve cancer detection.
Methods
By applying unsupervised clustering and supervised machine learning on large cfDNA shallow whole-genome sequencing datasets from healthy individuals (n = 367) and patients with different hematological (n = 238) and solid malignancies (n = 320), we identified cfDNA signatures that enabled cancer detection and typing.
Results
Unsupervised clustering revealed cancer type-specific sub-grouping. Classification using a supervised machine learning model yielded accuracies of 96% and 65% in discriminating hematological and solid malignancies from healthy controls, respectively. The accuracy of disease type prediction was 85% and 70% for the hematological and solid cancers, respectively. The potential utility of managing a specific cancer was demonstrated by classifying benign from invasive and borderline adnexal masses with an area under the curve of 0.87 and 0.74, respectively.
Conclusions
This approach provides a generic analytical strategy for non-invasive pan-cancer detection and cancer type prediction.</abstract><pub>Oxford University Press</pub><doi>10.1093/clinchem/hvac095</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3071-1191</orcidid><orcidid>https://orcid.org/0000-0002-3651-069X</orcidid><orcidid>https://orcid.org/0000-0001-9726-144X</orcidid><orcidid>https://orcid.org/0000-0001-8990-7837</orcidid><orcidid>https://orcid.org/0000-0002-3707-6645</orcidid><orcidid>https://orcid.org/0000-0003-4719-1935</orcidid><orcidid>https://orcid.org/0000-0002-7321-4339</orcidid><orcidid>https://orcid.org/0000-0001-6055-2569</orcidid><orcidid>https://orcid.org/0000-0002-1162-7963</orcidid><orcidid>https://orcid.org/0000-0003-4945-8867</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-9147 |
ispartof | Clinical chemistry (Baltimore, Md.), 2022-09, Vol.68 (9), p.1164-1176 |
issn | 0009-9147 1530-8561 |
language | eng |
recordid | cdi_proquest_miscellaneous_2682785444 |
source | Oxford Journals Online |
title | Pan-Cancer Detection and Typing by Mining Patterns in Large Genome-Wide Cell-Free DNA Sequencing Datasets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pan-Cancer%20Detection%20and%20Typing%20by%20Mining%20Patterns%20in%20Large%20Genome-Wide%20Cell-Free%20DNA%20Sequencing%20Datasets&rft.jtitle=Clinical%20chemistry%20(Baltimore,%20Md.)&rft.au=Che,%20Huiwen&rft.date=2022-09-01&rft.volume=68&rft.issue=9&rft.spage=1164&rft.epage=1176&rft.pages=1164-1176&rft.issn=0009-9147&rft.eissn=1530-8561&rft_id=info:doi/10.1093/clinchem/hvac095&rft_dat=%3Cproquest_cross%3E2682785444%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-adc4fd4d05ba8807b45745ea4755b73bf9734796d59daa5a15b177334c7ad7b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2682785444&rft_id=info:pmid/&rft_oup_id=10.1093/clinchem/hvac095&rfr_iscdi=true |