Loading…

Microglial response promotes neurodegeneration in the Ndufs4 KO mouse model of Leigh syndrome

Leigh syndrome is a mitochondrial disease characterized by neurodegeneration, neuroinflammation, and early death. Mice lacking NDUFS4, a mitochondrial complex I subunit (Ndufs4 KO mice), have been established as a good animal model for studying human pathology associated with Leigh syndrome. As the...

Full description

Saved in:
Bibliographic Details
Published in:Glia 2022-11, Vol.70 (11), p.2032-2044
Main Authors: Aguilar, Kevin, Comes, Gemma, Canal, Carla, Quintana, Albert, Sanz, Elisenda, Hidalgo, Juan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Leigh syndrome is a mitochondrial disease characterized by neurodegeneration, neuroinflammation, and early death. Mice lacking NDUFS4, a mitochondrial complex I subunit (Ndufs4 KO mice), have been established as a good animal model for studying human pathology associated with Leigh syndrome. As the disease progresses, there is an increase in neurodegeneration and neuroinflammation, thereby leading to deteriorating neurological symptoms, including motor deficits, breathing alterations, and eventually, death of the animal. However, despite the magnitude of neuroinflammation associated with brain lesions, the role of neuroinflammatory pathways and their main cellular components have not been addressed directly as relevant players in the disease pathology. Here, we investigate the role of microglial cells, the main immune cells of the CNS, in Leigh‐like syndrome pathology, by pharmacologically depleting them using the colony‐stimulating factor 1 receptor antagonist PLX3397. Microglial depletion extended lifespan and delayed motor symptoms in Ndufs4 KO mice, likely by preventing neuronal loss. Next, we investigated the role of the major cytokine interleukin‐6 (IL‐6) in the disease progression. IL‐6 deficiency partially rescued breathing abnormalities and modulated gliosis but did not extend the lifespan or rescue motor decline in Ndufs4 KO mice. The present results show that microglial accumulation is pathogenic, in a process independent of IL‐6, and hints toward a contributing role of neuroinflammation in the disease of Ndufs4 KO mice and potentially in patients with Leigh syndrome. Main Points Microglial depletion extends lifespan, delays motor symptoms, and protects from neuronal loss in Ndufs4 KO mice, demonstrating a causative role of neuroinflammation in the disease. IL‐6 deficiency partially rescues breathing abnormalities.
ISSN:0894-1491
1098-1136
DOI:10.1002/glia.24234