Loading…
ΘR-string : A geometry-based representation for efficient and effective retrieval of images by spatial similarity
A spatial similarity algorithm assesses the degree to which the spatial relationships among the domain objects in a database image conform to those specified in the query image. In this paper, we propose a geometry-based structure for representing the spatial relationships in the images and an assoc...
Saved in:
Published in: | IEEE transactions on knowledge and data engineering 1998-05, Vol.10 (3), p.504-512 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 512 |
container_issue | 3 |
container_start_page | 504 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 10 |
creator | GUDIVADA, V. N |
description | A spatial similarity algorithm assesses the degree to which the spatial relationships among the domain objects in a database image conform to those specified in the query image. In this paper, we propose a geometry-based structure for representing the spatial relationships in the images and an associated spatial similarity algorithm. The proposed algorithm recognizes both translation, scale, and rotation variants of an image, and variants of the image generated by an arbitrary composition of translation, scale, and rotation transformations. The algorithm has theta (n log n) time complexity in terms of the number of objects common to the database and query images. The retrieval effectiveness of the proposed algorithm is evaluated using the TESSA image collection. |
doi_str_mv | 10.1109/69.687982 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_26833217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26833217</sourcerecordid><originalsourceid>FETCH-LOGICAL-p145t-ef9bd68488de65fc9a04efa79f671b7327720b8ef5c6238ac7fd614263a5b66d3</originalsourceid><addsrcrecordid>eNotj8tKAzEYhYMoWKsL3yALcTc1t8nFXSneoCCIrofMzJ8SmZtJWpg38al8JiN2df5z-P4DB6FrSlaUEnMnzUpqZTQ7QQtalrpg1NDTfBNBC8GFOkcXMX4SQrTSdIHCz_dbEVPwww7f4zXewdhDCnNR2wgtDjAFiDAkm_w4YDcGDM75xucI26H9c9Akf4CM5hY42A6PDvve7iDiesZxyq85jL73nQ0-zZfozNkuwtVRl-jj8eF981xsX59eNuttMVFRpgKcqVuphdYtyNI1xhIBzirjpKK14kwpRmoNrmwk49o2yrWSCia5LWspW75Et_-9Uxi_9hBT1fvYQNfZAcZ9rJjUnDOqMnhzBG1sbOeCHRofqynkFWGuGDfEiJL_AqONa5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26833217</pqid></control><display><type>article</type><title>ΘR-string : A geometry-based representation for efficient and effective retrieval of images by spatial similarity</title><source>IEEE Xplore (Online service)</source><creator>GUDIVADA, V. N</creator><creatorcontrib>GUDIVADA, V. N</creatorcontrib><description>A spatial similarity algorithm assesses the degree to which the spatial relationships among the domain objects in a database image conform to those specified in the query image. In this paper, we propose a geometry-based structure for representing the spatial relationships in the images and an associated spatial similarity algorithm. The proposed algorithm recognizes both translation, scale, and rotation variants of an image, and variants of the image generated by an arbitrary composition of translation, scale, and rotation transformations. The algorithm has theta (n log n) time complexity in terms of the number of objects common to the database and query images. The retrieval effectiveness of the proposed algorithm is evaluated using the TESSA image collection.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/69.687982</identifier><language>eng</language><publisher>New York, NY: IEEE Computer Society</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Information systems. Data bases ; Memory organisation. Data processing ; Pattern recognition. Digital image processing. Computational geometry ; Software ; Theoretical computing</subject><ispartof>IEEE transactions on knowledge and data engineering, 1998-05, Vol.10 (3), p.504-512</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2390945$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GUDIVADA, V. N</creatorcontrib><title>ΘR-string : A geometry-based representation for efficient and effective retrieval of images by spatial similarity</title><title>IEEE transactions on knowledge and data engineering</title><description>A spatial similarity algorithm assesses the degree to which the spatial relationships among the domain objects in a database image conform to those specified in the query image. In this paper, we propose a geometry-based structure for representing the spatial relationships in the images and an associated spatial similarity algorithm. The proposed algorithm recognizes both translation, scale, and rotation variants of an image, and variants of the image generated by an arbitrary composition of translation, scale, and rotation transformations. The algorithm has theta (n log n) time complexity in terms of the number of objects common to the database and query images. The retrieval effectiveness of the proposed algorithm is evaluated using the TESSA image collection.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Software</subject><subject>Theoretical computing</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNotj8tKAzEYhYMoWKsL3yALcTc1t8nFXSneoCCIrofMzJ8SmZtJWpg38al8JiN2df5z-P4DB6FrSlaUEnMnzUpqZTQ7QQtalrpg1NDTfBNBC8GFOkcXMX4SQrTSdIHCz_dbEVPwww7f4zXewdhDCnNR2wgtDjAFiDAkm_w4YDcGDM75xucI26H9c9Akf4CM5hY42A6PDvve7iDiesZxyq85jL73nQ0-zZfozNkuwtVRl-jj8eF981xsX59eNuttMVFRpgKcqVuphdYtyNI1xhIBzirjpKK14kwpRmoNrmwk49o2yrWSCia5LWspW75Et_-9Uxi_9hBT1fvYQNfZAcZ9rJjUnDOqMnhzBG1sbOeCHRofqynkFWGuGDfEiJL_AqONa5U</recordid><startdate>19980501</startdate><enddate>19980501</enddate><creator>GUDIVADA, V. N</creator><general>IEEE Computer Society</general><scope>IQODW</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980501</creationdate><title>ΘR-string : A geometry-based representation for efficient and effective retrieval of images by spatial similarity</title><author>GUDIVADA, V. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p145t-ef9bd68488de65fc9a04efa79f671b7327720b8ef5c6238ac7fd614263a5b66d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Software</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GUDIVADA, V. N</creatorcontrib><collection>Pascal-Francis</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GUDIVADA, V. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ΘR-string : A geometry-based representation for efficient and effective retrieval of images by spatial similarity</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><date>1998-05-01</date><risdate>1998</risdate><volume>10</volume><issue>3</issue><spage>504</spage><epage>512</epage><pages>504-512</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><abstract>A spatial similarity algorithm assesses the degree to which the spatial relationships among the domain objects in a database image conform to those specified in the query image. In this paper, we propose a geometry-based structure for representing the spatial relationships in the images and an associated spatial similarity algorithm. The proposed algorithm recognizes both translation, scale, and rotation variants of an image, and variants of the image generated by an arbitrary composition of translation, scale, and rotation transformations. The algorithm has theta (n log n) time complexity in terms of the number of objects common to the database and query images. The retrieval effectiveness of the proposed algorithm is evaluated using the TESSA image collection.</abstract><cop>New York, NY</cop><pub>IEEE Computer Society</pub><doi>10.1109/69.687982</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 1998-05, Vol.10 (3), p.504-512 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_proquest_miscellaneous_26833217 |
source | IEEE Xplore (Online service) |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Information systems. Data bases Memory organisation. Data processing Pattern recognition. Digital image processing. Computational geometry Software Theoretical computing |
title | ΘR-string : A geometry-based representation for efficient and effective retrieval of images by spatial similarity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%98R-string%20:%20A%20geometry-based%20representation%20for%20efficient%20and%20effective%20retrieval%20of%20images%20by%20spatial%20similarity&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=GUDIVADA,%20V.%20N&rft.date=1998-05-01&rft.volume=10&rft.issue=3&rft.spage=504&rft.epage=512&rft.pages=504-512&rft.issn=1041-4347&rft.eissn=1558-2191&rft_id=info:doi/10.1109/69.687982&rft_dat=%3Cproquest_pasca%3E26833217%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p145t-ef9bd68488de65fc9a04efa79f671b7327720b8ef5c6238ac7fd614263a5b66d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26833217&rft_id=info:pmid/&rfr_iscdi=true |