Loading…

ΘR-string : A geometry-based representation for efficient and effective retrieval of images by spatial similarity

A spatial similarity algorithm assesses the degree to which the spatial relationships among the domain objects in a database image conform to those specified in the query image. In this paper, we propose a geometry-based structure for representing the spatial relationships in the images and an assoc...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering 1998-05, Vol.10 (3), p.504-512
Main Author: GUDIVADA, V. N
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 512
container_issue 3
container_start_page 504
container_title IEEE transactions on knowledge and data engineering
container_volume 10
creator GUDIVADA, V. N
description A spatial similarity algorithm assesses the degree to which the spatial relationships among the domain objects in a database image conform to those specified in the query image. In this paper, we propose a geometry-based structure for representing the spatial relationships in the images and an associated spatial similarity algorithm. The proposed algorithm recognizes both translation, scale, and rotation variants of an image, and variants of the image generated by an arbitrary composition of translation, scale, and rotation transformations. The algorithm has theta (n log n) time complexity in terms of the number of objects common to the database and query images. The retrieval effectiveness of the proposed algorithm is evaluated using the TESSA image collection.
doi_str_mv 10.1109/69.687982
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_26833217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26833217</sourcerecordid><originalsourceid>FETCH-LOGICAL-p145t-ef9bd68488de65fc9a04efa79f671b7327720b8ef5c6238ac7fd614263a5b66d3</originalsourceid><addsrcrecordid>eNotj8tKAzEYhYMoWKsL3yALcTc1t8nFXSneoCCIrofMzJ8SmZtJWpg38al8JiN2df5z-P4DB6FrSlaUEnMnzUpqZTQ7QQtalrpg1NDTfBNBC8GFOkcXMX4SQrTSdIHCz_dbEVPwww7f4zXewdhDCnNR2wgtDjAFiDAkm_w4YDcGDM75xucI26H9c9Akf4CM5hY42A6PDvve7iDiesZxyq85jL73nQ0-zZfozNkuwtVRl-jj8eF981xsX59eNuttMVFRpgKcqVuphdYtyNI1xhIBzirjpKK14kwpRmoNrmwk49o2yrWSCia5LWspW75Et_-9Uxi_9hBT1fvYQNfZAcZ9rJjUnDOqMnhzBG1sbOeCHRofqynkFWGuGDfEiJL_AqONa5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26833217</pqid></control><display><type>article</type><title>ΘR-string : A geometry-based representation for efficient and effective retrieval of images by spatial similarity</title><source>IEEE Xplore (Online service)</source><creator>GUDIVADA, V. N</creator><creatorcontrib>GUDIVADA, V. N</creatorcontrib><description>A spatial similarity algorithm assesses the degree to which the spatial relationships among the domain objects in a database image conform to those specified in the query image. In this paper, we propose a geometry-based structure for representing the spatial relationships in the images and an associated spatial similarity algorithm. The proposed algorithm recognizes both translation, scale, and rotation variants of an image, and variants of the image generated by an arbitrary composition of translation, scale, and rotation transformations. The algorithm has theta (n log n) time complexity in terms of the number of objects common to the database and query images. The retrieval effectiveness of the proposed algorithm is evaluated using the TESSA image collection.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/69.687982</identifier><language>eng</language><publisher>New York, NY: IEEE Computer Society</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Information systems. Data bases ; Memory organisation. Data processing ; Pattern recognition. Digital image processing. Computational geometry ; Software ; Theoretical computing</subject><ispartof>IEEE transactions on knowledge and data engineering, 1998-05, Vol.10 (3), p.504-512</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2390945$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GUDIVADA, V. N</creatorcontrib><title>ΘR-string : A geometry-based representation for efficient and effective retrieval of images by spatial similarity</title><title>IEEE transactions on knowledge and data engineering</title><description>A spatial similarity algorithm assesses the degree to which the spatial relationships among the domain objects in a database image conform to those specified in the query image. In this paper, we propose a geometry-based structure for representing the spatial relationships in the images and an associated spatial similarity algorithm. The proposed algorithm recognizes both translation, scale, and rotation variants of an image, and variants of the image generated by an arbitrary composition of translation, scale, and rotation transformations. The algorithm has theta (n log n) time complexity in terms of the number of objects common to the database and query images. The retrieval effectiveness of the proposed algorithm is evaluated using the TESSA image collection.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Software</subject><subject>Theoretical computing</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNotj8tKAzEYhYMoWKsL3yALcTc1t8nFXSneoCCIrofMzJ8SmZtJWpg38al8JiN2df5z-P4DB6FrSlaUEnMnzUpqZTQ7QQtalrpg1NDTfBNBC8GFOkcXMX4SQrTSdIHCz_dbEVPwww7f4zXewdhDCnNR2wgtDjAFiDAkm_w4YDcGDM75xucI26H9c9Akf4CM5hY42A6PDvve7iDiesZxyq85jL73nQ0-zZfozNkuwtVRl-jj8eF981xsX59eNuttMVFRpgKcqVuphdYtyNI1xhIBzirjpKK14kwpRmoNrmwk49o2yrWSCia5LWspW75Et_-9Uxi_9hBT1fvYQNfZAcZ9rJjUnDOqMnhzBG1sbOeCHRofqynkFWGuGDfEiJL_AqONa5U</recordid><startdate>19980501</startdate><enddate>19980501</enddate><creator>GUDIVADA, V. N</creator><general>IEEE Computer Society</general><scope>IQODW</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980501</creationdate><title>ΘR-string : A geometry-based representation for efficient and effective retrieval of images by spatial similarity</title><author>GUDIVADA, V. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p145t-ef9bd68488de65fc9a04efa79f671b7327720b8ef5c6238ac7fd614263a5b66d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Software</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GUDIVADA, V. N</creatorcontrib><collection>Pascal-Francis</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GUDIVADA, V. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ΘR-string : A geometry-based representation for efficient and effective retrieval of images by spatial similarity</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><date>1998-05-01</date><risdate>1998</risdate><volume>10</volume><issue>3</issue><spage>504</spage><epage>512</epage><pages>504-512</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><abstract>A spatial similarity algorithm assesses the degree to which the spatial relationships among the domain objects in a database image conform to those specified in the query image. In this paper, we propose a geometry-based structure for representing the spatial relationships in the images and an associated spatial similarity algorithm. The proposed algorithm recognizes both translation, scale, and rotation variants of an image, and variants of the image generated by an arbitrary composition of translation, scale, and rotation transformations. The algorithm has theta (n log n) time complexity in terms of the number of objects common to the database and query images. The retrieval effectiveness of the proposed algorithm is evaluated using the TESSA image collection.</abstract><cop>New York, NY</cop><pub>IEEE Computer Society</pub><doi>10.1109/69.687982</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 1998-05, Vol.10 (3), p.504-512
issn 1041-4347
1558-2191
language eng
recordid cdi_proquest_miscellaneous_26833217
source IEEE Xplore (Online service)
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Information systems. Data bases
Memory organisation. Data processing
Pattern recognition. Digital image processing. Computational geometry
Software
Theoretical computing
title ΘR-string : A geometry-based representation for efficient and effective retrieval of images by spatial similarity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%98R-string%20:%20A%20geometry-based%20representation%20for%20efficient%20and%20effective%20retrieval%20of%20images%20by%20spatial%20similarity&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=GUDIVADA,%20V.%20N&rft.date=1998-05-01&rft.volume=10&rft.issue=3&rft.spage=504&rft.epage=512&rft.pages=504-512&rft.issn=1041-4347&rft.eissn=1558-2191&rft_id=info:doi/10.1109/69.687982&rft_dat=%3Cproquest_pasca%3E26833217%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p145t-ef9bd68488de65fc9a04efa79f671b7327720b8ef5c6238ac7fd614263a5b66d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26833217&rft_id=info:pmid/&rfr_iscdi=true