Loading…
Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles
Liquid–liquid phase separation has emerged as an important means of intracellular RNA compartmentalization. Some membraneless organelles host two or more compartments serving different putative biochemical roles. The mechanisms for, and functional consequences of, this subcompartmentalization are no...
Saved in:
Published in: | Nature chemistry 2022-10, Vol.14 (10), p.1110-1117 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c396t-1a4adf1544cbf34192259862004bd713c8aa08de013601b48ec21cbc938670313 |
---|---|
cites | cdi_FETCH-LOGICAL-c396t-1a4adf1544cbf34192259862004bd713c8aa08de013601b48ec21cbc938670313 |
container_end_page | 1117 |
container_issue | 10 |
container_start_page | 1110 |
container_title | Nature chemistry |
container_volume | 14 |
creator | Choi, Saehyun Meyer, McCauley O. Bevilacqua, Philip C. Keating, Christine D. |
description | Liquid–liquid phase separation has emerged as an important means of intracellular RNA compartmentalization. Some membraneless organelles host two or more compartments serving different putative biochemical roles. The mechanisms for, and functional consequences of, this subcompartmentalization are not yet well understood. Here we show that adjacent phases of decapeptide-based multiphase model membraneless organelles differ markedly in their interactions with RNA. Single- and double-stranded RNAs preferentially accumulate in different phases within the same droplet, and one phase is more destabilizing for RNA duplexes than the other. Single-phase peptide droplets did not capture this behaviour. Phase coexistence introduces new thermodynamic equilibria that alter RNA duplex stability and RNA sorting by hybridization state. These effects require neither biospecific RNA-binding sites nor full-length proteins. As such, they are more general and point to primitive versions of mechanisms operating in extant biology that could aid understanding and enable the design of functional artificial membraneless organelles.
The biochemical roles and mechanisms of multiphase membraneless organelles are not yet well understood. Now, multiphase peptide droplets have been shown to sort RNA based on whether it is single- or double-stranded, as well as impact RNA duplexation through in-droplet thermodynamic equilibria. This work provides insight into possible primitive mechanisms for multicompartment intracellular condensates and can aid in the design of functional artificial membraneless organelles. |
doi_str_mv | 10.1038/s41557-022-00980-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2684098662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718493981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-1a4adf1544cbf34192259862004bd713c8aa08de013601b48ec21cbc938670313</originalsourceid><addsrcrecordid>eNp9kU1LxDAYhIMouK7-AU8BL16i-WqaHhfxCxYV0XNI03Q3S9vUpBX335u6ouDB0zuHZ4bhHQBOCb4gmMnLyEmW5QhTijAuJEb5HpiRPMsQZ7zY_9EMH4KjGDcYi4wRMQPj01pHi2Jvjaudgc8PC6iNGdux0YPzHdRdBauxb-wHHNY2tL7adrp1JkLXwUQNrp8SoPHa2PCuBwsTY5sIax9ga9sy6M42Nkbow2qSSR-Dg1o30Z583zl4vbl-ubpDy8fb-6vFEhlWiAERzXVVk4xzU9aMk4LSrJCCYszLKifMSK2xrCwmTGBScmkNJaY0BZMix4ywOTjf5fbBv402Dqp10aQKqYcfo6JC8vQuIWhCz_6gGz-GLrVTNCeSF6yQUyDdUSb4GIOtVR9cq8NWEaymJdRuCZWWUF9LqDyZ2M4UE9ytbPiN_sf1CUb0jL8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718493981</pqid></control><display><type>article</type><title>Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles</title><source>Nature</source><creator>Choi, Saehyun ; Meyer, McCauley O. ; Bevilacqua, Philip C. ; Keating, Christine D.</creator><creatorcontrib>Choi, Saehyun ; Meyer, McCauley O. ; Bevilacqua, Philip C. ; Keating, Christine D.</creatorcontrib><description>Liquid–liquid phase separation has emerged as an important means of intracellular RNA compartmentalization. Some membraneless organelles host two or more compartments serving different putative biochemical roles. The mechanisms for, and functional consequences of, this subcompartmentalization are not yet well understood. Here we show that adjacent phases of decapeptide-based multiphase model membraneless organelles differ markedly in their interactions with RNA. Single- and double-stranded RNAs preferentially accumulate in different phases within the same droplet, and one phase is more destabilizing for RNA duplexes than the other. Single-phase peptide droplets did not capture this behaviour. Phase coexistence introduces new thermodynamic equilibria that alter RNA duplex stability and RNA sorting by hybridization state. These effects require neither biospecific RNA-binding sites nor full-length proteins. As such, they are more general and point to primitive versions of mechanisms operating in extant biology that could aid understanding and enable the design of functional artificial membraneless organelles.
The biochemical roles and mechanisms of multiphase membraneless organelles are not yet well understood. Now, multiphase peptide droplets have been shown to sort RNA based on whether it is single- or double-stranded, as well as impact RNA duplexation through in-droplet thermodynamic equilibria. This work provides insight into possible primitive mechanisms for multicompartment intracellular condensates and can aid in the design of functional artificial membraneless organelles.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-022-00980-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/92/552 ; 639/638/298/923/1028 ; 639/638/92/56 ; Analytical Chemistry ; Binding sites ; Biochemistry ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Coexistence ; Double-stranded RNA ; Droplets ; Hybridization ; Inorganic Chemistry ; Intracellular ; Liquid phases ; Multiphase ; Organelles ; Organic Chemistry ; Peptides ; Phase separation ; Physical Chemistry ; Ribonucleic acid ; RNA ; Thermodynamic equilibrium ; Thermodynamics</subject><ispartof>Nature chemistry, 2022-10, Vol.14 (10), p.1110-1117</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-1a4adf1544cbf34192259862004bd713c8aa08de013601b48ec21cbc938670313</citedby><cites>FETCH-LOGICAL-c396t-1a4adf1544cbf34192259862004bd713c8aa08de013601b48ec21cbc938670313</cites><orcidid>0000-0001-6039-1961 ; 0000-0003-2607-9311 ; 0000-0001-8074-3434 ; 0000-0001-7070-3578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Choi, Saehyun</creatorcontrib><creatorcontrib>Meyer, McCauley O.</creatorcontrib><creatorcontrib>Bevilacqua, Philip C.</creatorcontrib><creatorcontrib>Keating, Christine D.</creatorcontrib><title>Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><description>Liquid–liquid phase separation has emerged as an important means of intracellular RNA compartmentalization. Some membraneless organelles host two or more compartments serving different putative biochemical roles. The mechanisms for, and functional consequences of, this subcompartmentalization are not yet well understood. Here we show that adjacent phases of decapeptide-based multiphase model membraneless organelles differ markedly in their interactions with RNA. Single- and double-stranded RNAs preferentially accumulate in different phases within the same droplet, and one phase is more destabilizing for RNA duplexes than the other. Single-phase peptide droplets did not capture this behaviour. Phase coexistence introduces new thermodynamic equilibria that alter RNA duplex stability and RNA sorting by hybridization state. These effects require neither biospecific RNA-binding sites nor full-length proteins. As such, they are more general and point to primitive versions of mechanisms operating in extant biology that could aid understanding and enable the design of functional artificial membraneless organelles.
The biochemical roles and mechanisms of multiphase membraneless organelles are not yet well understood. Now, multiphase peptide droplets have been shown to sort RNA based on whether it is single- or double-stranded, as well as impact RNA duplexation through in-droplet thermodynamic equilibria. This work provides insight into possible primitive mechanisms for multicompartment intracellular condensates and can aid in the design of functional artificial membraneless organelles.</description><subject>631/92/552</subject><subject>639/638/298/923/1028</subject><subject>639/638/92/56</subject><subject>Analytical Chemistry</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Coexistence</subject><subject>Double-stranded RNA</subject><subject>Droplets</subject><subject>Hybridization</subject><subject>Inorganic Chemistry</subject><subject>Intracellular</subject><subject>Liquid phases</subject><subject>Multiphase</subject><subject>Organelles</subject><subject>Organic Chemistry</subject><subject>Peptides</subject><subject>Phase separation</subject><subject>Physical Chemistry</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamics</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LxDAYhIMouK7-AU8BL16i-WqaHhfxCxYV0XNI03Q3S9vUpBX335u6ouDB0zuHZ4bhHQBOCb4gmMnLyEmW5QhTijAuJEb5HpiRPMsQZ7zY_9EMH4KjGDcYi4wRMQPj01pHi2Jvjaudgc8PC6iNGdux0YPzHdRdBauxb-wHHNY2tL7adrp1JkLXwUQNrp8SoPHa2PCuBwsTY5sIax9ga9sy6M42Nkbow2qSSR-Dg1o30Z583zl4vbl-ubpDy8fb-6vFEhlWiAERzXVVk4xzU9aMk4LSrJCCYszLKifMSK2xrCwmTGBScmkNJaY0BZMix4ywOTjf5fbBv402Dqp10aQKqYcfo6JC8vQuIWhCz_6gGz-GLrVTNCeSF6yQUyDdUSb4GIOtVR9cq8NWEaymJdRuCZWWUF9LqDyZ2M4UE9ytbPiN_sf1CUb0jL8</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Choi, Saehyun</creator><creator>Meyer, McCauley O.</creator><creator>Bevilacqua, Philip C.</creator><creator>Keating, Christine D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6039-1961</orcidid><orcidid>https://orcid.org/0000-0003-2607-9311</orcidid><orcidid>https://orcid.org/0000-0001-8074-3434</orcidid><orcidid>https://orcid.org/0000-0001-7070-3578</orcidid></search><sort><creationdate>20221001</creationdate><title>Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles</title><author>Choi, Saehyun ; Meyer, McCauley O. ; Bevilacqua, Philip C. ; Keating, Christine D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-1a4adf1544cbf34192259862004bd713c8aa08de013601b48ec21cbc938670313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/92/552</topic><topic>639/638/298/923/1028</topic><topic>639/638/92/56</topic><topic>Analytical Chemistry</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Coexistence</topic><topic>Double-stranded RNA</topic><topic>Droplets</topic><topic>Hybridization</topic><topic>Inorganic Chemistry</topic><topic>Intracellular</topic><topic>Liquid phases</topic><topic>Multiphase</topic><topic>Organelles</topic><topic>Organic Chemistry</topic><topic>Peptides</topic><topic>Phase separation</topic><topic>Physical Chemistry</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Saehyun</creatorcontrib><creatorcontrib>Meyer, McCauley O.</creatorcontrib><creatorcontrib>Bevilacqua, Philip C.</creatorcontrib><creatorcontrib>Keating, Christine D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Saehyun</au><au>Meyer, McCauley O.</au><au>Bevilacqua, Philip C.</au><au>Keating, Christine D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>14</volume><issue>10</issue><spage>1110</spage><epage>1117</epage><pages>1110-1117</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Liquid–liquid phase separation has emerged as an important means of intracellular RNA compartmentalization. Some membraneless organelles host two or more compartments serving different putative biochemical roles. The mechanisms for, and functional consequences of, this subcompartmentalization are not yet well understood. Here we show that adjacent phases of decapeptide-based multiphase model membraneless organelles differ markedly in their interactions with RNA. Single- and double-stranded RNAs preferentially accumulate in different phases within the same droplet, and one phase is more destabilizing for RNA duplexes than the other. Single-phase peptide droplets did not capture this behaviour. Phase coexistence introduces new thermodynamic equilibria that alter RNA duplex stability and RNA sorting by hybridization state. These effects require neither biospecific RNA-binding sites nor full-length proteins. As such, they are more general and point to primitive versions of mechanisms operating in extant biology that could aid understanding and enable the design of functional artificial membraneless organelles.
The biochemical roles and mechanisms of multiphase membraneless organelles are not yet well understood. Now, multiphase peptide droplets have been shown to sort RNA based on whether it is single- or double-stranded, as well as impact RNA duplexation through in-droplet thermodynamic equilibria. This work provides insight into possible primitive mechanisms for multicompartment intracellular condensates and can aid in the design of functional artificial membraneless organelles.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41557-022-00980-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6039-1961</orcidid><orcidid>https://orcid.org/0000-0003-2607-9311</orcidid><orcidid>https://orcid.org/0000-0001-8074-3434</orcidid><orcidid>https://orcid.org/0000-0001-7070-3578</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2022-10, Vol.14 (10), p.1110-1117 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_2684098662 |
source | Nature |
subjects | 631/92/552 639/638/298/923/1028 639/638/92/56 Analytical Chemistry Binding sites Biochemistry Chemistry Chemistry and Materials Science Chemistry/Food Science Coexistence Double-stranded RNA Droplets Hybridization Inorganic Chemistry Intracellular Liquid phases Multiphase Organelles Organic Chemistry Peptides Phase separation Physical Chemistry Ribonucleic acid RNA Thermodynamic equilibrium Thermodynamics |
title | Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A25%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-specific%20RNA%20accumulation%20and%20duplex%20thermodynamics%20in%20multiphase%20coacervate%20models%20for%20membraneless%20organelles&rft.jtitle=Nature%20chemistry&rft.au=Choi,%20Saehyun&rft.date=2022-10-01&rft.volume=14&rft.issue=10&rft.spage=1110&rft.epage=1117&rft.pages=1110-1117&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-022-00980-7&rft_dat=%3Cproquest_cross%3E2718493981%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-1a4adf1544cbf34192259862004bd713c8aa08de013601b48ec21cbc938670313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2718493981&rft_id=info:pmid/&rfr_iscdi=true |