Loading…

Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles

Liquid–liquid phase separation has emerged as an important means of intracellular RNA compartmentalization. Some membraneless organelles host two or more compartments serving different putative biochemical roles. The mechanisms for, and functional consequences of, this subcompartmentalization are no...

Full description

Saved in:
Bibliographic Details
Published in:Nature chemistry 2022-10, Vol.14 (10), p.1110-1117
Main Authors: Choi, Saehyun, Meyer, McCauley O., Bevilacqua, Philip C., Keating, Christine D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-1a4adf1544cbf34192259862004bd713c8aa08de013601b48ec21cbc938670313
cites cdi_FETCH-LOGICAL-c396t-1a4adf1544cbf34192259862004bd713c8aa08de013601b48ec21cbc938670313
container_end_page 1117
container_issue 10
container_start_page 1110
container_title Nature chemistry
container_volume 14
creator Choi, Saehyun
Meyer, McCauley O.
Bevilacqua, Philip C.
Keating, Christine D.
description Liquid–liquid phase separation has emerged as an important means of intracellular RNA compartmentalization. Some membraneless organelles host two or more compartments serving different putative biochemical roles. The mechanisms for, and functional consequences of, this subcompartmentalization are not yet well understood. Here we show that adjacent phases of decapeptide-based multiphase model membraneless organelles differ markedly in their interactions with RNA. Single- and double-stranded RNAs preferentially accumulate in different phases within the same droplet, and one phase is more destabilizing for RNA duplexes than the other. Single-phase peptide droplets did not capture this behaviour. Phase coexistence introduces new thermodynamic equilibria that alter RNA duplex stability and RNA sorting by hybridization state. These effects require neither biospecific RNA-binding sites nor full-length proteins. As such, they are more general and point to primitive versions of mechanisms operating in extant biology that could aid understanding and enable the design of functional artificial membraneless organelles. The biochemical roles and mechanisms of multiphase membraneless organelles are not yet well understood. Now, multiphase peptide droplets have been shown to sort RNA based on whether it is single- or double-stranded, as well as impact RNA duplexation through in-droplet thermodynamic equilibria. This work provides insight into possible primitive mechanisms for multicompartment intracellular condensates and can aid in the design of functional artificial membraneless organelles.
doi_str_mv 10.1038/s41557-022-00980-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2684098662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718493981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-1a4adf1544cbf34192259862004bd713c8aa08de013601b48ec21cbc938670313</originalsourceid><addsrcrecordid>eNp9kU1LxDAYhIMouK7-AU8BL16i-WqaHhfxCxYV0XNI03Q3S9vUpBX335u6ouDB0zuHZ4bhHQBOCb4gmMnLyEmW5QhTijAuJEb5HpiRPMsQZ7zY_9EMH4KjGDcYi4wRMQPj01pHi2Jvjaudgc8PC6iNGdux0YPzHdRdBauxb-wHHNY2tL7adrp1JkLXwUQNrp8SoPHa2PCuBwsTY5sIax9ga9sy6M42Nkbow2qSSR-Dg1o30Z583zl4vbl-ubpDy8fb-6vFEhlWiAERzXVVk4xzU9aMk4LSrJCCYszLKifMSK2xrCwmTGBScmkNJaY0BZMix4ywOTjf5fbBv402Dqp10aQKqYcfo6JC8vQuIWhCz_6gGz-GLrVTNCeSF6yQUyDdUSb4GIOtVR9cq8NWEaymJdRuCZWWUF9LqDyZ2M4UE9ytbPiN_sf1CUb0jL8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718493981</pqid></control><display><type>article</type><title>Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles</title><source>Nature</source><creator>Choi, Saehyun ; Meyer, McCauley O. ; Bevilacqua, Philip C. ; Keating, Christine D.</creator><creatorcontrib>Choi, Saehyun ; Meyer, McCauley O. ; Bevilacqua, Philip C. ; Keating, Christine D.</creatorcontrib><description>Liquid–liquid phase separation has emerged as an important means of intracellular RNA compartmentalization. Some membraneless organelles host two or more compartments serving different putative biochemical roles. The mechanisms for, and functional consequences of, this subcompartmentalization are not yet well understood. Here we show that adjacent phases of decapeptide-based multiphase model membraneless organelles differ markedly in their interactions with RNA. Single- and double-stranded RNAs preferentially accumulate in different phases within the same droplet, and one phase is more destabilizing for RNA duplexes than the other. Single-phase peptide droplets did not capture this behaviour. Phase coexistence introduces new thermodynamic equilibria that alter RNA duplex stability and RNA sorting by hybridization state. These effects require neither biospecific RNA-binding sites nor full-length proteins. As such, they are more general and point to primitive versions of mechanisms operating in extant biology that could aid understanding and enable the design of functional artificial membraneless organelles. The biochemical roles and mechanisms of multiphase membraneless organelles are not yet well understood. Now, multiphase peptide droplets have been shown to sort RNA based on whether it is single- or double-stranded, as well as impact RNA duplexation through in-droplet thermodynamic equilibria. This work provides insight into possible primitive mechanisms for multicompartment intracellular condensates and can aid in the design of functional artificial membraneless organelles.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-022-00980-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/92/552 ; 639/638/298/923/1028 ; 639/638/92/56 ; Analytical Chemistry ; Binding sites ; Biochemistry ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Coexistence ; Double-stranded RNA ; Droplets ; Hybridization ; Inorganic Chemistry ; Intracellular ; Liquid phases ; Multiphase ; Organelles ; Organic Chemistry ; Peptides ; Phase separation ; Physical Chemistry ; Ribonucleic acid ; RNA ; Thermodynamic equilibrium ; Thermodynamics</subject><ispartof>Nature chemistry, 2022-10, Vol.14 (10), p.1110-1117</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-1a4adf1544cbf34192259862004bd713c8aa08de013601b48ec21cbc938670313</citedby><cites>FETCH-LOGICAL-c396t-1a4adf1544cbf34192259862004bd713c8aa08de013601b48ec21cbc938670313</cites><orcidid>0000-0001-6039-1961 ; 0000-0003-2607-9311 ; 0000-0001-8074-3434 ; 0000-0001-7070-3578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Choi, Saehyun</creatorcontrib><creatorcontrib>Meyer, McCauley O.</creatorcontrib><creatorcontrib>Bevilacqua, Philip C.</creatorcontrib><creatorcontrib>Keating, Christine D.</creatorcontrib><title>Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><description>Liquid–liquid phase separation has emerged as an important means of intracellular RNA compartmentalization. Some membraneless organelles host two or more compartments serving different putative biochemical roles. The mechanisms for, and functional consequences of, this subcompartmentalization are not yet well understood. Here we show that adjacent phases of decapeptide-based multiphase model membraneless organelles differ markedly in their interactions with RNA. Single- and double-stranded RNAs preferentially accumulate in different phases within the same droplet, and one phase is more destabilizing for RNA duplexes than the other. Single-phase peptide droplets did not capture this behaviour. Phase coexistence introduces new thermodynamic equilibria that alter RNA duplex stability and RNA sorting by hybridization state. These effects require neither biospecific RNA-binding sites nor full-length proteins. As such, they are more general and point to primitive versions of mechanisms operating in extant biology that could aid understanding and enable the design of functional artificial membraneless organelles. The biochemical roles and mechanisms of multiphase membraneless organelles are not yet well understood. Now, multiphase peptide droplets have been shown to sort RNA based on whether it is single- or double-stranded, as well as impact RNA duplexation through in-droplet thermodynamic equilibria. This work provides insight into possible primitive mechanisms for multicompartment intracellular condensates and can aid in the design of functional artificial membraneless organelles.</description><subject>631/92/552</subject><subject>639/638/298/923/1028</subject><subject>639/638/92/56</subject><subject>Analytical Chemistry</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Coexistence</subject><subject>Double-stranded RNA</subject><subject>Droplets</subject><subject>Hybridization</subject><subject>Inorganic Chemistry</subject><subject>Intracellular</subject><subject>Liquid phases</subject><subject>Multiphase</subject><subject>Organelles</subject><subject>Organic Chemistry</subject><subject>Peptides</subject><subject>Phase separation</subject><subject>Physical Chemistry</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamics</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LxDAYhIMouK7-AU8BL16i-WqaHhfxCxYV0XNI03Q3S9vUpBX335u6ouDB0zuHZ4bhHQBOCb4gmMnLyEmW5QhTijAuJEb5HpiRPMsQZ7zY_9EMH4KjGDcYi4wRMQPj01pHi2Jvjaudgc8PC6iNGdux0YPzHdRdBauxb-wHHNY2tL7adrp1JkLXwUQNrp8SoPHa2PCuBwsTY5sIax9ga9sy6M42Nkbow2qSSR-Dg1o30Z583zl4vbl-ubpDy8fb-6vFEhlWiAERzXVVk4xzU9aMk4LSrJCCYszLKifMSK2xrCwmTGBScmkNJaY0BZMix4ywOTjf5fbBv402Dqp10aQKqYcfo6JC8vQuIWhCz_6gGz-GLrVTNCeSF6yQUyDdUSb4GIOtVR9cq8NWEaymJdRuCZWWUF9LqDyZ2M4UE9ytbPiN_sf1CUb0jL8</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Choi, Saehyun</creator><creator>Meyer, McCauley O.</creator><creator>Bevilacqua, Philip C.</creator><creator>Keating, Christine D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6039-1961</orcidid><orcidid>https://orcid.org/0000-0003-2607-9311</orcidid><orcidid>https://orcid.org/0000-0001-8074-3434</orcidid><orcidid>https://orcid.org/0000-0001-7070-3578</orcidid></search><sort><creationdate>20221001</creationdate><title>Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles</title><author>Choi, Saehyun ; Meyer, McCauley O. ; Bevilacqua, Philip C. ; Keating, Christine D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-1a4adf1544cbf34192259862004bd713c8aa08de013601b48ec21cbc938670313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/92/552</topic><topic>639/638/298/923/1028</topic><topic>639/638/92/56</topic><topic>Analytical Chemistry</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Coexistence</topic><topic>Double-stranded RNA</topic><topic>Droplets</topic><topic>Hybridization</topic><topic>Inorganic Chemistry</topic><topic>Intracellular</topic><topic>Liquid phases</topic><topic>Multiphase</topic><topic>Organelles</topic><topic>Organic Chemistry</topic><topic>Peptides</topic><topic>Phase separation</topic><topic>Physical Chemistry</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Saehyun</creatorcontrib><creatorcontrib>Meyer, McCauley O.</creatorcontrib><creatorcontrib>Bevilacqua, Philip C.</creatorcontrib><creatorcontrib>Keating, Christine D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Saehyun</au><au>Meyer, McCauley O.</au><au>Bevilacqua, Philip C.</au><au>Keating, Christine D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>14</volume><issue>10</issue><spage>1110</spage><epage>1117</epage><pages>1110-1117</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Liquid–liquid phase separation has emerged as an important means of intracellular RNA compartmentalization. Some membraneless organelles host two or more compartments serving different putative biochemical roles. The mechanisms for, and functional consequences of, this subcompartmentalization are not yet well understood. Here we show that adjacent phases of decapeptide-based multiphase model membraneless organelles differ markedly in their interactions with RNA. Single- and double-stranded RNAs preferentially accumulate in different phases within the same droplet, and one phase is more destabilizing for RNA duplexes than the other. Single-phase peptide droplets did not capture this behaviour. Phase coexistence introduces new thermodynamic equilibria that alter RNA duplex stability and RNA sorting by hybridization state. These effects require neither biospecific RNA-binding sites nor full-length proteins. As such, they are more general and point to primitive versions of mechanisms operating in extant biology that could aid understanding and enable the design of functional artificial membraneless organelles. The biochemical roles and mechanisms of multiphase membraneless organelles are not yet well understood. Now, multiphase peptide droplets have been shown to sort RNA based on whether it is single- or double-stranded, as well as impact RNA duplexation through in-droplet thermodynamic equilibria. This work provides insight into possible primitive mechanisms for multicompartment intracellular condensates and can aid in the design of functional artificial membraneless organelles.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41557-022-00980-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6039-1961</orcidid><orcidid>https://orcid.org/0000-0003-2607-9311</orcidid><orcidid>https://orcid.org/0000-0001-8074-3434</orcidid><orcidid>https://orcid.org/0000-0001-7070-3578</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2022-10, Vol.14 (10), p.1110-1117
issn 1755-4330
1755-4349
language eng
recordid cdi_proquest_miscellaneous_2684098662
source Nature
subjects 631/92/552
639/638/298/923/1028
639/638/92/56
Analytical Chemistry
Binding sites
Biochemistry
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Coexistence
Double-stranded RNA
Droplets
Hybridization
Inorganic Chemistry
Intracellular
Liquid phases
Multiphase
Organelles
Organic Chemistry
Peptides
Phase separation
Physical Chemistry
Ribonucleic acid
RNA
Thermodynamic equilibrium
Thermodynamics
title Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A25%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-specific%20RNA%20accumulation%20and%20duplex%20thermodynamics%20in%20multiphase%20coacervate%20models%20for%20membraneless%20organelles&rft.jtitle=Nature%20chemistry&rft.au=Choi,%20Saehyun&rft.date=2022-10-01&rft.volume=14&rft.issue=10&rft.spage=1110&rft.epage=1117&rft.pages=1110-1117&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-022-00980-7&rft_dat=%3Cproquest_cross%3E2718493981%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-1a4adf1544cbf34192259862004bd713c8aa08de013601b48ec21cbc938670313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2718493981&rft_id=info:pmid/&rfr_iscdi=true