Loading…
Contribution of the collective electron dynamics to the polarization response of an atom subjected to intense IR and weak XUV pulses
We analyze the polarization response of a single Ne atom in an intense infrared (IR) laser field and weak extreme ultraviolet (XUV) isolated attosecond pulse (IAP). The analysis is based on the numerical solution of the time-dependent Kohn–Sham equations and the recently developed perturbation theor...
Saved in:
Published in: | Optics letters 2022-07, Vol.47 (13), p.3147-3150 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We analyze the polarization response of a single Ne atom in an intense infrared (IR) laser field and weak extreme ultraviolet (XUV) isolated attosecond pulse (IAP). The analysis is based on the numerical solution of the time-dependent Kohn–Sham equations and the recently developed perturbation theory in the XUV field for an atom subjected to an intense IR field. In our numerical results, we observe a significant increase in the magnitude of the atomic polarization response at the frequencies near the carrier frequency of the IAP and associate it with XUV-induced collective dynamics contributing to the polarizability of Ne. The specific interference between IR- and XUV-induced channels is discussed, and its utilization for retrieving the phase of the generated harmonics in the IR field is suggested. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.460076 |