Loading…

MSA-Net: Establishing Reliable Correspondences by Multiscale Attention Network

In this paper, we propose a novel multi-scale attention based network (called MSA-Net) for feature matching problems. Current deep networks based feature matching methods suffer from limited effectiveness and robustness when applied to different scenarios, due to random distributions of outliers and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2022-01, Vol.31, p.4598-4608
Main Authors: Zheng, Linxin, Xiao, Guobao, Shi, Ziwei, Wang, Shiping, Ma, Jiayi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c254t-f7ddd03b0942f8a06326b59c9bd9267b8bda50bce9d19acd1919d037967c77fe3
cites cdi_FETCH-LOGICAL-c254t-f7ddd03b0942f8a06326b59c9bd9267b8bda50bce9d19acd1919d037967c77fe3
container_end_page 4608
container_issue
container_start_page 4598
container_title IEEE transactions on image processing
container_volume 31
creator Zheng, Linxin
Xiao, Guobao
Shi, Ziwei
Wang, Shiping
Ma, Jiayi
description In this paper, we propose a novel multi-scale attention based network (called MSA-Net) for feature matching problems. Current deep networks based feature matching methods suffer from limited effectiveness and robustness when applied to different scenarios, due to random distributions of outliers and insufficient information learning. To address this issue, we propose a multi-scale attention block to enhance the robustness to outliers, for improving the representational ability of the feature map. In addition, we also design a novel context channel refine block and a context spatial refine block to mine the information context with less parameters along channel and spatial dimensions, respectively. The proposed MSA-Net is able to effectively infer the probability of correspondences being inliers with less parameters. Extensive experiments on outlier removal and relative pose estimation have shown the performance improvements of our network over current state-of-the-art methods with less parameters on both outdoor and indoor datasets. Notably, our proposed network achieves an 11.7% improvement at error threshold 5° without RANSAC than the state-of-the-art method on relative pose estimation task when trained on YFCC100M dataset.
doi_str_mv 10.1109/TIP.2022.3186535
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2684100494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9813457</ieee_id><sourcerecordid>2684100494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-f7ddd03b0942f8a06326b59c9bd9267b8bda50bce9d19acd1919d037967c77fe3</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRrFbvgpeAFy-p-96st1KqFtoqWs_LJploaprU3S3Sf--WFg9e5sF8MwwfQlcEDwjB-m4xeRlQTOmAkUwKJo7QGdGcpBhzehxrLFSqCNc9dO79EmPCBZGnqMeEUjLD2Rmaz96G6RzCfTL2weZN7T_r9iN5haaOHSSjzjnw664toS3AJ_k2mW2aUPvCxukwBGhD3bVJPPHTua8LdFLZxsPlIffR-8N4MXpKp8-Pk9FwmhZU8JBWqixLzHKsOa0yiyWjMhe60HmpqVR5lpdW4LwAXRJtixiIjrzSUhVKVcD66HZ_d-267w34YFbxJWga20K38YbKjJNoQfOI3vxDl93GtfG7HZUpzCTRkcJ7qnCd9w4qs3b1yrqtIdjsXJvo2uxcm4PruHK9X6kB4A_XGWFcKPYLaPB38Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688703619</pqid></control><display><type>article</type><title>MSA-Net: Establishing Reliable Correspondences by Multiscale Attention Network</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zheng, Linxin ; Xiao, Guobao ; Shi, Ziwei ; Wang, Shiping ; Ma, Jiayi</creator><creatorcontrib>Zheng, Linxin ; Xiao, Guobao ; Shi, Ziwei ; Wang, Shiping ; Ma, Jiayi</creatorcontrib><description>In this paper, we propose a novel multi-scale attention based network (called MSA-Net) for feature matching problems. Current deep networks based feature matching methods suffer from limited effectiveness and robustness when applied to different scenarios, due to random distributions of outliers and insufficient information learning. To address this issue, we propose a multi-scale attention block to enhance the robustness to outliers, for improving the representational ability of the feature map. In addition, we also design a novel context channel refine block and a context spatial refine block to mine the information context with less parameters along channel and spatial dimensions, respectively. The proposed MSA-Net is able to effectively infer the probability of correspondences being inliers with less parameters. Extensive experiments on outlier removal and relative pose estimation have shown the performance improvements of our network over current state-of-the-art methods with less parameters on both outdoor and indoor datasets. Notably, our proposed network achieves an 11.7% improvement at error threshold 5° without RANSAC than the state-of-the-art method on relative pose estimation task when trained on YFCC100M dataset.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2022.3186535</identifier><identifier>PMID: 35776808</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Context ; Context modeling ; Data mining ; Datasets ; Deep learning ; Feature extraction ; Feature maps ; Inliers (landforms) ; Matching ; Outlier removal ; Outliers (statistics) ; Parameters ; Pose estimation ; Robustness ; Task analysis ; wide-baseline stereo</subject><ispartof>IEEE transactions on image processing, 2022-01, Vol.31, p.4598-4608</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c254t-f7ddd03b0942f8a06326b59c9bd9267b8bda50bce9d19acd1919d037967c77fe3</citedby><cites>FETCH-LOGICAL-c254t-f7ddd03b0942f8a06326b59c9bd9267b8bda50bce9d19acd1919d037967c77fe3</cites><orcidid>0000-0003-3264-3265 ; 0000-0003-2928-8100 ; 0000-0001-5195-9682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9813457$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Zheng, Linxin</creatorcontrib><creatorcontrib>Xiao, Guobao</creatorcontrib><creatorcontrib>Shi, Ziwei</creatorcontrib><creatorcontrib>Wang, Shiping</creatorcontrib><creatorcontrib>Ma, Jiayi</creatorcontrib><title>MSA-Net: Establishing Reliable Correspondences by Multiscale Attention Network</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>In this paper, we propose a novel multi-scale attention based network (called MSA-Net) for feature matching problems. Current deep networks based feature matching methods suffer from limited effectiveness and robustness when applied to different scenarios, due to random distributions of outliers and insufficient information learning. To address this issue, we propose a multi-scale attention block to enhance the robustness to outliers, for improving the representational ability of the feature map. In addition, we also design a novel context channel refine block and a context spatial refine block to mine the information context with less parameters along channel and spatial dimensions, respectively. The proposed MSA-Net is able to effectively infer the probability of correspondences being inliers with less parameters. Extensive experiments on outlier removal and relative pose estimation have shown the performance improvements of our network over current state-of-the-art methods with less parameters on both outdoor and indoor datasets. Notably, our proposed network achieves an 11.7% improvement at error threshold 5° without RANSAC than the state-of-the-art method on relative pose estimation task when trained on YFCC100M dataset.</description><subject>Context</subject><subject>Context modeling</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Inliers (landforms)</subject><subject>Matching</subject><subject>Outlier removal</subject><subject>Outliers (statistics)</subject><subject>Parameters</subject><subject>Pose estimation</subject><subject>Robustness</subject><subject>Task analysis</subject><subject>wide-baseline stereo</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AQgBdRrFbvgpeAFy-p-96st1KqFtoqWs_LJploaprU3S3Sf--WFg9e5sF8MwwfQlcEDwjB-m4xeRlQTOmAkUwKJo7QGdGcpBhzehxrLFSqCNc9dO79EmPCBZGnqMeEUjLD2Rmaz96G6RzCfTL2weZN7T_r9iN5haaOHSSjzjnw664toS3AJ_k2mW2aUPvCxukwBGhD3bVJPPHTua8LdFLZxsPlIffR-8N4MXpKp8-Pk9FwmhZU8JBWqixLzHKsOa0yiyWjMhe60HmpqVR5lpdW4LwAXRJtixiIjrzSUhVKVcD66HZ_d-267w34YFbxJWga20K38YbKjJNoQfOI3vxDl93GtfG7HZUpzCTRkcJ7qnCd9w4qs3b1yrqtIdjsXJvo2uxcm4PruHK9X6kB4A_XGWFcKPYLaPB38Q</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Zheng, Linxin</creator><creator>Xiao, Guobao</creator><creator>Shi, Ziwei</creator><creator>Wang, Shiping</creator><creator>Ma, Jiayi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3264-3265</orcidid><orcidid>https://orcid.org/0000-0003-2928-8100</orcidid><orcidid>https://orcid.org/0000-0001-5195-9682</orcidid></search><sort><creationdate>20220101</creationdate><title>MSA-Net: Establishing Reliable Correspondences by Multiscale Attention Network</title><author>Zheng, Linxin ; Xiao, Guobao ; Shi, Ziwei ; Wang, Shiping ; Ma, Jiayi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-f7ddd03b0942f8a06326b59c9bd9267b8bda50bce9d19acd1919d037967c77fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Context</topic><topic>Context modeling</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Inliers (landforms)</topic><topic>Matching</topic><topic>Outlier removal</topic><topic>Outliers (statistics)</topic><topic>Parameters</topic><topic>Pose estimation</topic><topic>Robustness</topic><topic>Task analysis</topic><topic>wide-baseline stereo</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Linxin</creatorcontrib><creatorcontrib>Xiao, Guobao</creatorcontrib><creatorcontrib>Shi, Ziwei</creatorcontrib><creatorcontrib>Wang, Shiping</creatorcontrib><creatorcontrib>Ma, Jiayi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Linxin</au><au>Xiao, Guobao</au><au>Shi, Ziwei</au><au>Wang, Shiping</au><au>Ma, Jiayi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MSA-Net: Establishing Reliable Correspondences by Multiscale Attention Network</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>31</volume><spage>4598</spage><epage>4608</epage><pages>4598-4608</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we propose a novel multi-scale attention based network (called MSA-Net) for feature matching problems. Current deep networks based feature matching methods suffer from limited effectiveness and robustness when applied to different scenarios, due to random distributions of outliers and insufficient information learning. To address this issue, we propose a multi-scale attention block to enhance the robustness to outliers, for improving the representational ability of the feature map. In addition, we also design a novel context channel refine block and a context spatial refine block to mine the information context with less parameters along channel and spatial dimensions, respectively. The proposed MSA-Net is able to effectively infer the probability of correspondences being inliers with less parameters. Extensive experiments on outlier removal and relative pose estimation have shown the performance improvements of our network over current state-of-the-art methods with less parameters on both outdoor and indoor datasets. Notably, our proposed network achieves an 11.7% improvement at error threshold 5° without RANSAC than the state-of-the-art method on relative pose estimation task when trained on YFCC100M dataset.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>35776808</pmid><doi>10.1109/TIP.2022.3186535</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3264-3265</orcidid><orcidid>https://orcid.org/0000-0003-2928-8100</orcidid><orcidid>https://orcid.org/0000-0001-5195-9682</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2022-01, Vol.31, p.4598-4608
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_2684100494
source IEEE Electronic Library (IEL) Journals
subjects Context
Context modeling
Data mining
Datasets
Deep learning
Feature extraction
Feature maps
Inliers (landforms)
Matching
Outlier removal
Outliers (statistics)
Parameters
Pose estimation
Robustness
Task analysis
wide-baseline stereo
title MSA-Net: Establishing Reliable Correspondences by Multiscale Attention Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MSA-Net:%20Establishing%20Reliable%20Correspondences%20by%20Multiscale%20Attention%20Network&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Zheng,%20Linxin&rft.date=2022-01-01&rft.volume=31&rft.spage=4598&rft.epage=4608&rft.pages=4598-4608&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2022.3186535&rft_dat=%3Cproquest_ieee_%3E2684100494%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c254t-f7ddd03b0942f8a06326b59c9bd9267b8bda50bce9d19acd1919d037967c77fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2688703619&rft_id=info:pmid/35776808&rft_ieee_id=9813457&rfr_iscdi=true