Loading…
Interferometry of actuated microcantilevers to determine material properties and test structure nonidealities in MEMS
By integrating interferometric deflection data from electrostatically actuated microcantilevers with a numerical finite difference model, we have developed a step-by-step procedure to determine values of Young's modulus while simultaneously quantifying nonidealities. The central concept in the...
Saved in:
Published in: | Journal of microelectromechanical systems 2001-09, Vol.10 (3), p.336-346 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c495t-4c94bc1c9e5908393e24359306f8d5356869737fca884cb1d515f8678633fc503 |
---|---|
cites | cdi_FETCH-LOGICAL-c495t-4c94bc1c9e5908393e24359306f8d5356869737fca884cb1d515f8678633fc503 |
container_end_page | 346 |
container_issue | 3 |
container_start_page | 336 |
container_title | Journal of microelectromechanical systems |
container_volume | 10 |
creator | Jensen, B.D. de Boer, M.P. Masters, N.D. Bitsie, F. LaVan, D.A. |
description | By integrating interferometric deflection data from electrostatically actuated microcantilevers with a numerical finite difference model, we have developed a step-by-step procedure to determine values of Young's modulus while simultaneously quantifying nonidealities. The central concept in the methodology is that nonidealities affect the long-range deflections of the beams, which can be determined to near nanometer accuracy. Beam take-off angle, curvature and support post compliance are systematically determined. Young's modulus is then the only unknown parameter, and is directly found. We find an average value of Young's modulus for polycrystalline silicon of 164.3 GPa and a standard deviation of 3.2 GPa (/spl plusmn/2%), reflecting data from three different support post designs. Systematic errors were assessed and may alter the average value by /spl plusmn/5%. An independent estimate from grain orientation measurements yielded 163.4-164.4 GPa (the Voigt and Reuss bounds), in agreement with the step-by-step procedure. Other features of the test procedure include that it is rapid, nondestructive, verifiable and requires only a small area on the test chip. |
doi_str_mv | 10.1109/84.946779 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26844098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>946779</ieee_id><sourcerecordid>26844098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-4c94bc1c9e5908393e24359306f8d5356869737fca884cb1d515f8678633fc503</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_AgCtbVg9eegoith6l5m99HKW0ttHiwPQ9p5gVSZjJrkin0vzfbXYp4qKcE8smXx_sS8hHYCQCz34w4sUJpbV-RA7ACOgbSvG53JnWnQeq35F0p94yBEEYdkOUyVcwB8zxhzY90DtT5uriKA52iz7N3qcYRHzAXWmc6YONTTEinZnJ0I93keYO5RizUpYFWLJWWmpcWk5GmOcUB3RifQEz0-uz613vyJrix4If9uSK352c3pz-6q58Xl6ffrzovrKyd8FbcefAWpWWGW45rwaXlTAUzSC6VUVZzHbwzRvg7GCTIYJQ2ivPgJeMrcrTLbTP-Xtpg_RSLx3F0Ceel9FooUEbYrfzyolwbYbRh6__DlieYNQ0evwhBaeCS86fMT__Q-3nJqW2mt5aDlcC36OsOtVJKyRj6TY6Ty489sH7bfW9Ev-u-2c_7QFe8G0N2ycfy1wcL2z2uyOGORUR8ft1n_AEksLWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>993195132</pqid></control><display><type>article</type><title>Interferometry of actuated microcantilevers to determine material properties and test structure nonidealities in MEMS</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jensen, B.D. ; de Boer, M.P. ; Masters, N.D. ; Bitsie, F. ; LaVan, D.A.</creator><creatorcontrib>Jensen, B.D. ; de Boer, M.P. ; Masters, N.D. ; Bitsie, F. ; LaVan, D.A.</creatorcontrib><description>By integrating interferometric deflection data from electrostatically actuated microcantilevers with a numerical finite difference model, we have developed a step-by-step procedure to determine values of Young's modulus while simultaneously quantifying nonidealities. The central concept in the methodology is that nonidealities affect the long-range deflections of the beams, which can be determined to near nanometer accuracy. Beam take-off angle, curvature and support post compliance are systematically determined. Young's modulus is then the only unknown parameter, and is directly found. We find an average value of Young's modulus for polycrystalline silicon of 164.3 GPa and a standard deviation of 3.2 GPa (/spl plusmn/2%), reflecting data from three different support post designs. Systematic errors were assessed and may alter the average value by /spl plusmn/5%. An independent estimate from grain orientation measurements yielded 163.4-164.4 GPa (the Voigt and Reuss bounds), in agreement with the step-by-step procedure. Other features of the test procedure include that it is rapid, nondestructive, verifiable and requires only a small area on the test chip.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/84.946779</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Beams (structural) ; Crystal orientation ; Curvature ; Deflection ; Elastic moduli ; Exact sciences and technology ; Finite difference method ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Industrial metrology. Testing ; Instrumentation for fluid dynamics ; Interferometry ; Laboratories ; Material properties ; Materials testing ; Mathematical analysis ; Mathematical models ; Mechanical engineering. Machine design ; Mechanical factors ; Microelectromechanical systems ; Micromechanical devices ; Modulus of elasticity ; Nondestructive testing ; Physics ; Polysilicon ; Precision engineering, watch making ; Silicon ; Standard deviation ; Statistical methods ; Substrates ; Thin films ; Transistors</subject><ispartof>Journal of microelectromechanical systems, 2001-09, Vol.10 (3), p.336-346</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-4c94bc1c9e5908393e24359306f8d5356869737fca884cb1d515f8678633fc503</citedby><cites>FETCH-LOGICAL-c495t-4c94bc1c9e5908393e24359306f8d5356869737fca884cb1d515f8678633fc503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/946779$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1091359$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jensen, B.D.</creatorcontrib><creatorcontrib>de Boer, M.P.</creatorcontrib><creatorcontrib>Masters, N.D.</creatorcontrib><creatorcontrib>Bitsie, F.</creatorcontrib><creatorcontrib>LaVan, D.A.</creatorcontrib><title>Interferometry of actuated microcantilevers to determine material properties and test structure nonidealities in MEMS</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>By integrating interferometric deflection data from electrostatically actuated microcantilevers with a numerical finite difference model, we have developed a step-by-step procedure to determine values of Young's modulus while simultaneously quantifying nonidealities. The central concept in the methodology is that nonidealities affect the long-range deflections of the beams, which can be determined to near nanometer accuracy. Beam take-off angle, curvature and support post compliance are systematically determined. Young's modulus is then the only unknown parameter, and is directly found. We find an average value of Young's modulus for polycrystalline silicon of 164.3 GPa and a standard deviation of 3.2 GPa (/spl plusmn/2%), reflecting data from three different support post designs. Systematic errors were assessed and may alter the average value by /spl plusmn/5%. An independent estimate from grain orientation measurements yielded 163.4-164.4 GPa (the Voigt and Reuss bounds), in agreement with the step-by-step procedure. Other features of the test procedure include that it is rapid, nondestructive, verifiable and requires only a small area on the test chip.</description><subject>Applied sciences</subject><subject>Beams (structural)</subject><subject>Crystal orientation</subject><subject>Curvature</subject><subject>Deflection</subject><subject>Elastic moduli</subject><subject>Exact sciences and technology</subject><subject>Finite difference method</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Industrial metrology. Testing</subject><subject>Instrumentation for fluid dynamics</subject><subject>Interferometry</subject><subject>Laboratories</subject><subject>Material properties</subject><subject>Materials testing</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical engineering. Machine design</subject><subject>Mechanical factors</subject><subject>Microelectromechanical systems</subject><subject>Micromechanical devices</subject><subject>Modulus of elasticity</subject><subject>Nondestructive testing</subject><subject>Physics</subject><subject>Polysilicon</subject><subject>Precision engineering, watch making</subject><subject>Silicon</subject><subject>Standard deviation</subject><subject>Statistical methods</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Transistors</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqF0c9rFDEUB_AgCtbVg9eegoith6l5m99HKW0ttHiwPQ9p5gVSZjJrkin0vzfbXYp4qKcE8smXx_sS8hHYCQCz34w4sUJpbV-RA7ACOgbSvG53JnWnQeq35F0p94yBEEYdkOUyVcwB8zxhzY90DtT5uriKA52iz7N3qcYRHzAXWmc6YONTTEinZnJ0I93keYO5RizUpYFWLJWWmpcWk5GmOcUB3RifQEz0-uz613vyJrix4If9uSK352c3pz-6q58Xl6ffrzovrKyd8FbcefAWpWWGW45rwaXlTAUzSC6VUVZzHbwzRvg7GCTIYJQ2ivPgJeMrcrTLbTP-Xtpg_RSLx3F0Ceel9FooUEbYrfzyolwbYbRh6__DlieYNQ0evwhBaeCS86fMT__Q-3nJqW2mt5aDlcC36OsOtVJKyRj6TY6Ty489sH7bfW9Ev-u-2c_7QFe8G0N2ycfy1wcL2z2uyOGORUR8ft1n_AEksLWc</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Jensen, B.D.</creator><creator>de Boer, M.P.</creator><creator>Masters, N.D.</creator><creator>Bitsie, F.</creator><creator>LaVan, D.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope><scope>H8D</scope><scope>7TC</scope></search><sort><creationdate>20010901</creationdate><title>Interferometry of actuated microcantilevers to determine material properties and test structure nonidealities in MEMS</title><author>Jensen, B.D. ; de Boer, M.P. ; Masters, N.D. ; Bitsie, F. ; LaVan, D.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-4c94bc1c9e5908393e24359306f8d5356869737fca884cb1d515f8678633fc503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Beams (structural)</topic><topic>Crystal orientation</topic><topic>Curvature</topic><topic>Deflection</topic><topic>Elastic moduli</topic><topic>Exact sciences and technology</topic><topic>Finite difference method</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Industrial metrology. Testing</topic><topic>Instrumentation for fluid dynamics</topic><topic>Interferometry</topic><topic>Laboratories</topic><topic>Material properties</topic><topic>Materials testing</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical engineering. Machine design</topic><topic>Mechanical factors</topic><topic>Microelectromechanical systems</topic><topic>Micromechanical devices</topic><topic>Modulus of elasticity</topic><topic>Nondestructive testing</topic><topic>Physics</topic><topic>Polysilicon</topic><topic>Precision engineering, watch making</topic><topic>Silicon</topic><topic>Standard deviation</topic><topic>Statistical methods</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, B.D.</creatorcontrib><creatorcontrib>de Boer, M.P.</creatorcontrib><creatorcontrib>Masters, N.D.</creatorcontrib><creatorcontrib>Bitsie, F.</creatorcontrib><creatorcontrib>LaVan, D.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Aerospace Database</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jensen, B.D.</au><au>de Boer, M.P.</au><au>Masters, N.D.</au><au>Bitsie, F.</au><au>LaVan, D.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interferometry of actuated microcantilevers to determine material properties and test structure nonidealities in MEMS</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2001-09-01</date><risdate>2001</risdate><volume>10</volume><issue>3</issue><spage>336</spage><epage>346</epage><pages>336-346</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>By integrating interferometric deflection data from electrostatically actuated microcantilevers with a numerical finite difference model, we have developed a step-by-step procedure to determine values of Young's modulus while simultaneously quantifying nonidealities. The central concept in the methodology is that nonidealities affect the long-range deflections of the beams, which can be determined to near nanometer accuracy. Beam take-off angle, curvature and support post compliance are systematically determined. Young's modulus is then the only unknown parameter, and is directly found. We find an average value of Young's modulus for polycrystalline silicon of 164.3 GPa and a standard deviation of 3.2 GPa (/spl plusmn/2%), reflecting data from three different support post designs. Systematic errors were assessed and may alter the average value by /spl plusmn/5%. An independent estimate from grain orientation measurements yielded 163.4-164.4 GPa (the Voigt and Reuss bounds), in agreement with the step-by-step procedure. Other features of the test procedure include that it is rapid, nondestructive, verifiable and requires only a small area on the test chip.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/84.946779</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2001-09, Vol.10 (3), p.336-346 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_proquest_miscellaneous_26844098 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Beams (structural) Crystal orientation Curvature Deflection Elastic moduli Exact sciences and technology Finite difference method Fluid dynamics Fundamental areas of phenomenology (including applications) Industrial metrology. Testing Instrumentation for fluid dynamics Interferometry Laboratories Material properties Materials testing Mathematical analysis Mathematical models Mechanical engineering. Machine design Mechanical factors Microelectromechanical systems Micromechanical devices Modulus of elasticity Nondestructive testing Physics Polysilicon Precision engineering, watch making Silicon Standard deviation Statistical methods Substrates Thin films Transistors |
title | Interferometry of actuated microcantilevers to determine material properties and test structure nonidealities in MEMS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A23%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interferometry%20of%20actuated%20microcantilevers%20to%20determine%20material%20properties%20and%20test%20structure%20nonidealities%20in%20MEMS&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Jensen,%20B.D.&rft.date=2001-09-01&rft.volume=10&rft.issue=3&rft.spage=336&rft.epage=346&rft.pages=336-346&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/84.946779&rft_dat=%3Cproquest_cross%3E26844098%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-4c94bc1c9e5908393e24359306f8d5356869737fca884cb1d515f8678633fc503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=993195132&rft_id=info:pmid/&rft_ieee_id=946779&rfr_iscdi=true |