Loading…

Interferometry of actuated microcantilevers to determine material properties and test structure nonidealities in MEMS

By integrating interferometric deflection data from electrostatically actuated microcantilevers with a numerical finite difference model, we have developed a step-by-step procedure to determine values of Young's modulus while simultaneously quantifying nonidealities. The central concept in the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of microelectromechanical systems 2001-09, Vol.10 (3), p.336-346
Main Authors: Jensen, B.D., de Boer, M.P., Masters, N.D., Bitsie, F., LaVan, D.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c495t-4c94bc1c9e5908393e24359306f8d5356869737fca884cb1d515f8678633fc503
cites cdi_FETCH-LOGICAL-c495t-4c94bc1c9e5908393e24359306f8d5356869737fca884cb1d515f8678633fc503
container_end_page 346
container_issue 3
container_start_page 336
container_title Journal of microelectromechanical systems
container_volume 10
creator Jensen, B.D.
de Boer, M.P.
Masters, N.D.
Bitsie, F.
LaVan, D.A.
description By integrating interferometric deflection data from electrostatically actuated microcantilevers with a numerical finite difference model, we have developed a step-by-step procedure to determine values of Young's modulus while simultaneously quantifying nonidealities. The central concept in the methodology is that nonidealities affect the long-range deflections of the beams, which can be determined to near nanometer accuracy. Beam take-off angle, curvature and support post compliance are systematically determined. Young's modulus is then the only unknown parameter, and is directly found. We find an average value of Young's modulus for polycrystalline silicon of 164.3 GPa and a standard deviation of 3.2 GPa (/spl plusmn/2%), reflecting data from three different support post designs. Systematic errors were assessed and may alter the average value by /spl plusmn/5%. An independent estimate from grain orientation measurements yielded 163.4-164.4 GPa (the Voigt and Reuss bounds), in agreement with the step-by-step procedure. Other features of the test procedure include that it is rapid, nondestructive, verifiable and requires only a small area on the test chip.
doi_str_mv 10.1109/84.946779
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26844098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>946779</ieee_id><sourcerecordid>26844098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-4c94bc1c9e5908393e24359306f8d5356869737fca884cb1d515f8678633fc503</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_AgCtbVg9eegoith6l5m99HKW0ttHiwPQ9p5gVSZjJrkin0vzfbXYp4qKcE8smXx_sS8hHYCQCz34w4sUJpbV-RA7ACOgbSvG53JnWnQeq35F0p94yBEEYdkOUyVcwB8zxhzY90DtT5uriKA52iz7N3qcYRHzAXWmc6YONTTEinZnJ0I93keYO5RizUpYFWLJWWmpcWk5GmOcUB3RifQEz0-uz613vyJrix4If9uSK352c3pz-6q58Xl6ffrzovrKyd8FbcefAWpWWGW45rwaXlTAUzSC6VUVZzHbwzRvg7GCTIYJQ2ivPgJeMrcrTLbTP-Xtpg_RSLx3F0Ceel9FooUEbYrfzyolwbYbRh6__DlieYNQ0evwhBaeCS86fMT__Q-3nJqW2mt5aDlcC36OsOtVJKyRj6TY6Ty489sH7bfW9Ev-u-2c_7QFe8G0N2ycfy1wcL2z2uyOGORUR8ft1n_AEksLWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>993195132</pqid></control><display><type>article</type><title>Interferometry of actuated microcantilevers to determine material properties and test structure nonidealities in MEMS</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jensen, B.D. ; de Boer, M.P. ; Masters, N.D. ; Bitsie, F. ; LaVan, D.A.</creator><creatorcontrib>Jensen, B.D. ; de Boer, M.P. ; Masters, N.D. ; Bitsie, F. ; LaVan, D.A.</creatorcontrib><description>By integrating interferometric deflection data from electrostatically actuated microcantilevers with a numerical finite difference model, we have developed a step-by-step procedure to determine values of Young's modulus while simultaneously quantifying nonidealities. The central concept in the methodology is that nonidealities affect the long-range deflections of the beams, which can be determined to near nanometer accuracy. Beam take-off angle, curvature and support post compliance are systematically determined. Young's modulus is then the only unknown parameter, and is directly found. We find an average value of Young's modulus for polycrystalline silicon of 164.3 GPa and a standard deviation of 3.2 GPa (/spl plusmn/2%), reflecting data from three different support post designs. Systematic errors were assessed and may alter the average value by /spl plusmn/5%. An independent estimate from grain orientation measurements yielded 163.4-164.4 GPa (the Voigt and Reuss bounds), in agreement with the step-by-step procedure. Other features of the test procedure include that it is rapid, nondestructive, verifiable and requires only a small area on the test chip.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/84.946779</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Beams (structural) ; Crystal orientation ; Curvature ; Deflection ; Elastic moduli ; Exact sciences and technology ; Finite difference method ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Industrial metrology. Testing ; Instrumentation for fluid dynamics ; Interferometry ; Laboratories ; Material properties ; Materials testing ; Mathematical analysis ; Mathematical models ; Mechanical engineering. Machine design ; Mechanical factors ; Microelectromechanical systems ; Micromechanical devices ; Modulus of elasticity ; Nondestructive testing ; Physics ; Polysilicon ; Precision engineering, watch making ; Silicon ; Standard deviation ; Statistical methods ; Substrates ; Thin films ; Transistors</subject><ispartof>Journal of microelectromechanical systems, 2001-09, Vol.10 (3), p.336-346</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-4c94bc1c9e5908393e24359306f8d5356869737fca884cb1d515f8678633fc503</citedby><cites>FETCH-LOGICAL-c495t-4c94bc1c9e5908393e24359306f8d5356869737fca884cb1d515f8678633fc503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/946779$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1091359$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jensen, B.D.</creatorcontrib><creatorcontrib>de Boer, M.P.</creatorcontrib><creatorcontrib>Masters, N.D.</creatorcontrib><creatorcontrib>Bitsie, F.</creatorcontrib><creatorcontrib>LaVan, D.A.</creatorcontrib><title>Interferometry of actuated microcantilevers to determine material properties and test structure nonidealities in MEMS</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>By integrating interferometric deflection data from electrostatically actuated microcantilevers with a numerical finite difference model, we have developed a step-by-step procedure to determine values of Young's modulus while simultaneously quantifying nonidealities. The central concept in the methodology is that nonidealities affect the long-range deflections of the beams, which can be determined to near nanometer accuracy. Beam take-off angle, curvature and support post compliance are systematically determined. Young's modulus is then the only unknown parameter, and is directly found. We find an average value of Young's modulus for polycrystalline silicon of 164.3 GPa and a standard deviation of 3.2 GPa (/spl plusmn/2%), reflecting data from three different support post designs. Systematic errors were assessed and may alter the average value by /spl plusmn/5%. An independent estimate from grain orientation measurements yielded 163.4-164.4 GPa (the Voigt and Reuss bounds), in agreement with the step-by-step procedure. Other features of the test procedure include that it is rapid, nondestructive, verifiable and requires only a small area on the test chip.</description><subject>Applied sciences</subject><subject>Beams (structural)</subject><subject>Crystal orientation</subject><subject>Curvature</subject><subject>Deflection</subject><subject>Elastic moduli</subject><subject>Exact sciences and technology</subject><subject>Finite difference method</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Industrial metrology. Testing</subject><subject>Instrumentation for fluid dynamics</subject><subject>Interferometry</subject><subject>Laboratories</subject><subject>Material properties</subject><subject>Materials testing</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical engineering. Machine design</subject><subject>Mechanical factors</subject><subject>Microelectromechanical systems</subject><subject>Micromechanical devices</subject><subject>Modulus of elasticity</subject><subject>Nondestructive testing</subject><subject>Physics</subject><subject>Polysilicon</subject><subject>Precision engineering, watch making</subject><subject>Silicon</subject><subject>Standard deviation</subject><subject>Statistical methods</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Transistors</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqF0c9rFDEUB_AgCtbVg9eegoith6l5m99HKW0ttHiwPQ9p5gVSZjJrkin0vzfbXYp4qKcE8smXx_sS8hHYCQCz34w4sUJpbV-RA7ACOgbSvG53JnWnQeq35F0p94yBEEYdkOUyVcwB8zxhzY90DtT5uriKA52iz7N3qcYRHzAXWmc6YONTTEinZnJ0I93keYO5RizUpYFWLJWWmpcWk5GmOcUB3RifQEz0-uz613vyJrix4If9uSK352c3pz-6q58Xl6ffrzovrKyd8FbcefAWpWWGW45rwaXlTAUzSC6VUVZzHbwzRvg7GCTIYJQ2ivPgJeMrcrTLbTP-Xtpg_RSLx3F0Ceel9FooUEbYrfzyolwbYbRh6__DlieYNQ0evwhBaeCS86fMT__Q-3nJqW2mt5aDlcC36OsOtVJKyRj6TY6Ty489sH7bfW9Ev-u-2c_7QFe8G0N2ycfy1wcL2z2uyOGORUR8ft1n_AEksLWc</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Jensen, B.D.</creator><creator>de Boer, M.P.</creator><creator>Masters, N.D.</creator><creator>Bitsie, F.</creator><creator>LaVan, D.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope><scope>H8D</scope><scope>7TC</scope></search><sort><creationdate>20010901</creationdate><title>Interferometry of actuated microcantilevers to determine material properties and test structure nonidealities in MEMS</title><author>Jensen, B.D. ; de Boer, M.P. ; Masters, N.D. ; Bitsie, F. ; LaVan, D.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-4c94bc1c9e5908393e24359306f8d5356869737fca884cb1d515f8678633fc503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Beams (structural)</topic><topic>Crystal orientation</topic><topic>Curvature</topic><topic>Deflection</topic><topic>Elastic moduli</topic><topic>Exact sciences and technology</topic><topic>Finite difference method</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Industrial metrology. Testing</topic><topic>Instrumentation for fluid dynamics</topic><topic>Interferometry</topic><topic>Laboratories</topic><topic>Material properties</topic><topic>Materials testing</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical engineering. Machine design</topic><topic>Mechanical factors</topic><topic>Microelectromechanical systems</topic><topic>Micromechanical devices</topic><topic>Modulus of elasticity</topic><topic>Nondestructive testing</topic><topic>Physics</topic><topic>Polysilicon</topic><topic>Precision engineering, watch making</topic><topic>Silicon</topic><topic>Standard deviation</topic><topic>Statistical methods</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, B.D.</creatorcontrib><creatorcontrib>de Boer, M.P.</creatorcontrib><creatorcontrib>Masters, N.D.</creatorcontrib><creatorcontrib>Bitsie, F.</creatorcontrib><creatorcontrib>LaVan, D.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Aerospace Database</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jensen, B.D.</au><au>de Boer, M.P.</au><au>Masters, N.D.</au><au>Bitsie, F.</au><au>LaVan, D.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interferometry of actuated microcantilevers to determine material properties and test structure nonidealities in MEMS</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2001-09-01</date><risdate>2001</risdate><volume>10</volume><issue>3</issue><spage>336</spage><epage>346</epage><pages>336-346</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>By integrating interferometric deflection data from electrostatically actuated microcantilevers with a numerical finite difference model, we have developed a step-by-step procedure to determine values of Young's modulus while simultaneously quantifying nonidealities. The central concept in the methodology is that nonidealities affect the long-range deflections of the beams, which can be determined to near nanometer accuracy. Beam take-off angle, curvature and support post compliance are systematically determined. Young's modulus is then the only unknown parameter, and is directly found. We find an average value of Young's modulus for polycrystalline silicon of 164.3 GPa and a standard deviation of 3.2 GPa (/spl plusmn/2%), reflecting data from three different support post designs. Systematic errors were assessed and may alter the average value by /spl plusmn/5%. An independent estimate from grain orientation measurements yielded 163.4-164.4 GPa (the Voigt and Reuss bounds), in agreement with the step-by-step procedure. Other features of the test procedure include that it is rapid, nondestructive, verifiable and requires only a small area on the test chip.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/84.946779</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2001-09, Vol.10 (3), p.336-346
issn 1057-7157
1941-0158
language eng
recordid cdi_proquest_miscellaneous_26844098
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Beams (structural)
Crystal orientation
Curvature
Deflection
Elastic moduli
Exact sciences and technology
Finite difference method
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Industrial metrology. Testing
Instrumentation for fluid dynamics
Interferometry
Laboratories
Material properties
Materials testing
Mathematical analysis
Mathematical models
Mechanical engineering. Machine design
Mechanical factors
Microelectromechanical systems
Micromechanical devices
Modulus of elasticity
Nondestructive testing
Physics
Polysilicon
Precision engineering, watch making
Silicon
Standard deviation
Statistical methods
Substrates
Thin films
Transistors
title Interferometry of actuated microcantilevers to determine material properties and test structure nonidealities in MEMS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A23%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interferometry%20of%20actuated%20microcantilevers%20to%20determine%20material%20properties%20and%20test%20structure%20nonidealities%20in%20MEMS&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Jensen,%20B.D.&rft.date=2001-09-01&rft.volume=10&rft.issue=3&rft.spage=336&rft.epage=346&rft.pages=336-346&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/84.946779&rft_dat=%3Cproquest_cross%3E26844098%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-4c94bc1c9e5908393e24359306f8d5356869737fca884cb1d515f8678633fc503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=993195132&rft_id=info:pmid/&rft_ieee_id=946779&rfr_iscdi=true