Loading…

Interstitial Li+ Occupancy Enabling Radiative/Nonradiative Transition Control toward Highly Efficient Cr3+-Based Near-Infrared Luminescence

Highly efficient and stable broadband near-infrared (NIR) emission phosphors are crucial for the construction of next-generation smart lighting sources; however, the discovery of target phosphors remains a great challenge. Benefiting from the interstitial Li+ occupancy-induced relatively large disto...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2022-07, Vol.14 (27), p.31035-31043
Main Authors: He, Fanquan, Song, Enhai, Chang, Hui, Zhou, Yayun, Xia, Zhiguo, Zhang, Qinyuan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 31043
container_issue 27
container_start_page 31035
container_title ACS applied materials & interfaces
container_volume 14
creator He, Fanquan
Song, Enhai
Chang, Hui
Zhou, Yayun
Xia, Zhiguo
Zhang, Qinyuan
description Highly efficient and stable broadband near-infrared (NIR) emission phosphors are crucial for the construction of next-generation smart lighting sources; however, the discovery of target phosphors remains a great challenge. Benefiting from the interstitial Li+ occupancy-induced relatively large distorted octahedral environment for Cr3+ and suppressed nonradiative relaxation of the emission centers, an NIR emission fluoride phosphor Na3GaF6:Cr3+,Li+ peaking at 758 nm with a high internal quantum efficiency of 95.8% and an external quantum efficiency of 38.3% is demonstrated. Moreover, it exhibits a good thermal stability (84.9%@150 °C of the integrated emission intensity at 25 °C) and excellent moisture resistance as well. A high-power light-emitting diode (LED) with a record watt-level NIR output (974.12 mW) and a photoelectric conversion efficiency of 20.9% is demonstrated by combining Na3GaF6:Cr3+,Li+ and a blue InGaN chip, and a special information encryption/decryption technology suitable for rapid and long-distance identification of machines is further presented based on this device. This study not only advances the development of efficient NIR emission phosphors for broadband NIR LEDs but also for NIR-related emerging applications and devices.
doi_str_mv 10.1021/acsami.2c07495
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2685032568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685032568</sourcerecordid><originalsourceid>FETCH-LOGICAL-a153t-f062dfb27311e194a72062a1d88655b680bcdd4f7344f71065ca576718d1e2f13</originalsourceid><addsrcrecordid>eNo9UEFOwzAQjBBIlMKVs4-IKq3txE56hKrQSlEroXKONrZTXKV2sR0Qb-DTGLVw2d1ZzY5mJ0luCR4TTMkEhIe9HlOBi3zKzpIBmeZ5WlJGz__nPL9MrrzfYcwzitkg-V6aoJwPOmjoUKVHaC1EfwAjvtDcQNNps0UvIDUE_aEmK2vcH0AbB8bHQ2vQzJrgbIeC_QQn0UJv37oo0LZaaGUCmrlslD6CVxKtFLh0aVoHLqKq32ujvFBGqOvkooXOq5tTHyavT_PNbJFW6-fl7KFKgbAspC3mVLYNLTJCVPwLCho3QGRZcsYaXuJGSJm3RZbHQjBnAljBC1JKomhLsmFyd9Q9OPveKx_qvY4Oug6Msr2vKS8ZzijjZaTeH6kx3Hpne2eisZrg-jfx-ph4fUo8-wFgv3Zp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685032568</pqid></control><display><type>article</type><title>Interstitial Li+ Occupancy Enabling Radiative/Nonradiative Transition Control toward Highly Efficient Cr3+-Based Near-Infrared Luminescence</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>He, Fanquan ; Song, Enhai ; Chang, Hui ; Zhou, Yayun ; Xia, Zhiguo ; Zhang, Qinyuan</creator><creatorcontrib>He, Fanquan ; Song, Enhai ; Chang, Hui ; Zhou, Yayun ; Xia, Zhiguo ; Zhang, Qinyuan</creatorcontrib><description>Highly efficient and stable broadband near-infrared (NIR) emission phosphors are crucial for the construction of next-generation smart lighting sources; however, the discovery of target phosphors remains a great challenge. Benefiting from the interstitial Li+ occupancy-induced relatively large distorted octahedral environment for Cr3+ and suppressed nonradiative relaxation of the emission centers, an NIR emission fluoride phosphor Na3GaF6:Cr3+,Li+ peaking at 758 nm with a high internal quantum efficiency of 95.8% and an external quantum efficiency of 38.3% is demonstrated. Moreover, it exhibits a good thermal stability (84.9%@150 °C of the integrated emission intensity at 25 °C) and excellent moisture resistance as well. A high-power light-emitting diode (LED) with a record watt-level NIR output (974.12 mW) and a photoelectric conversion efficiency of 20.9% is demonstrated by combining Na3GaF6:Cr3+,Li+ and a blue InGaN chip, and a special information encryption/decryption technology suitable for rapid and long-distance identification of machines is further presented based on this device. This study not only advances the development of efficient NIR emission phosphors for broadband NIR LEDs but also for NIR-related emerging applications and devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c07495</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Functional Inorganic Materials and Devices</subject><ispartof>ACS applied materials &amp; interfaces, 2022-07, Vol.14 (27), p.31035-31043</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9670-3223 ; 0000-0001-6544-4735 ; 0000-0003-1666-0532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>He, Fanquan</creatorcontrib><creatorcontrib>Song, Enhai</creatorcontrib><creatorcontrib>Chang, Hui</creatorcontrib><creatorcontrib>Zhou, Yayun</creatorcontrib><creatorcontrib>Xia, Zhiguo</creatorcontrib><creatorcontrib>Zhang, Qinyuan</creatorcontrib><title>Interstitial Li+ Occupancy Enabling Radiative/Nonradiative Transition Control toward Highly Efficient Cr3+-Based Near-Infrared Luminescence</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Highly efficient and stable broadband near-infrared (NIR) emission phosphors are crucial for the construction of next-generation smart lighting sources; however, the discovery of target phosphors remains a great challenge. Benefiting from the interstitial Li+ occupancy-induced relatively large distorted octahedral environment for Cr3+ and suppressed nonradiative relaxation of the emission centers, an NIR emission fluoride phosphor Na3GaF6:Cr3+,Li+ peaking at 758 nm with a high internal quantum efficiency of 95.8% and an external quantum efficiency of 38.3% is demonstrated. Moreover, it exhibits a good thermal stability (84.9%@150 °C of the integrated emission intensity at 25 °C) and excellent moisture resistance as well. A high-power light-emitting diode (LED) with a record watt-level NIR output (974.12 mW) and a photoelectric conversion efficiency of 20.9% is demonstrated by combining Na3GaF6:Cr3+,Li+ and a blue InGaN chip, and a special information encryption/decryption technology suitable for rapid and long-distance identification of machines is further presented based on this device. This study not only advances the development of efficient NIR emission phosphors for broadband NIR LEDs but also for NIR-related emerging applications and devices.</description><subject>Functional Inorganic Materials and Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9UEFOwzAQjBBIlMKVs4-IKq3txE56hKrQSlEroXKONrZTXKV2sR0Qb-DTGLVw2d1ZzY5mJ0luCR4TTMkEhIe9HlOBi3zKzpIBmeZ5WlJGz__nPL9MrrzfYcwzitkg-V6aoJwPOmjoUKVHaC1EfwAjvtDcQNNps0UvIDUE_aEmK2vcH0AbB8bHQ2vQzJrgbIeC_QQn0UJv37oo0LZaaGUCmrlslD6CVxKtFLh0aVoHLqKq32ujvFBGqOvkooXOq5tTHyavT_PNbJFW6-fl7KFKgbAspC3mVLYNLTJCVPwLCho3QGRZcsYaXuJGSJm3RZbHQjBnAljBC1JKomhLsmFyd9Q9OPveKx_qvY4Oug6Msr2vKS8ZzijjZaTeH6kx3Hpne2eisZrg-jfx-ph4fUo8-wFgv3Zp</recordid><startdate>20220713</startdate><enddate>20220713</enddate><creator>He, Fanquan</creator><creator>Song, Enhai</creator><creator>Chang, Hui</creator><creator>Zhou, Yayun</creator><creator>Xia, Zhiguo</creator><creator>Zhang, Qinyuan</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9670-3223</orcidid><orcidid>https://orcid.org/0000-0001-6544-4735</orcidid><orcidid>https://orcid.org/0000-0003-1666-0532</orcidid></search><sort><creationdate>20220713</creationdate><title>Interstitial Li+ Occupancy Enabling Radiative/Nonradiative Transition Control toward Highly Efficient Cr3+-Based Near-Infrared Luminescence</title><author>He, Fanquan ; Song, Enhai ; Chang, Hui ; Zhou, Yayun ; Xia, Zhiguo ; Zhang, Qinyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a153t-f062dfb27311e194a72062a1d88655b680bcdd4f7344f71065ca576718d1e2f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Functional Inorganic Materials and Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Fanquan</creatorcontrib><creatorcontrib>Song, Enhai</creatorcontrib><creatorcontrib>Chang, Hui</creatorcontrib><creatorcontrib>Zhou, Yayun</creatorcontrib><creatorcontrib>Xia, Zhiguo</creatorcontrib><creatorcontrib>Zhang, Qinyuan</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Fanquan</au><au>Song, Enhai</au><au>Chang, Hui</au><au>Zhou, Yayun</au><au>Xia, Zhiguo</au><au>Zhang, Qinyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interstitial Li+ Occupancy Enabling Radiative/Nonradiative Transition Control toward Highly Efficient Cr3+-Based Near-Infrared Luminescence</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-07-13</date><risdate>2022</risdate><volume>14</volume><issue>27</issue><spage>31035</spage><epage>31043</epage><pages>31035-31043</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Highly efficient and stable broadband near-infrared (NIR) emission phosphors are crucial for the construction of next-generation smart lighting sources; however, the discovery of target phosphors remains a great challenge. Benefiting from the interstitial Li+ occupancy-induced relatively large distorted octahedral environment for Cr3+ and suppressed nonradiative relaxation of the emission centers, an NIR emission fluoride phosphor Na3GaF6:Cr3+,Li+ peaking at 758 nm with a high internal quantum efficiency of 95.8% and an external quantum efficiency of 38.3% is demonstrated. Moreover, it exhibits a good thermal stability (84.9%@150 °C of the integrated emission intensity at 25 °C) and excellent moisture resistance as well. A high-power light-emitting diode (LED) with a record watt-level NIR output (974.12 mW) and a photoelectric conversion efficiency of 20.9% is demonstrated by combining Na3GaF6:Cr3+,Li+ and a blue InGaN chip, and a special information encryption/decryption technology suitable for rapid and long-distance identification of machines is further presented based on this device. This study not only advances the development of efficient NIR emission phosphors for broadband NIR LEDs but also for NIR-related emerging applications and devices.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c07495</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9670-3223</orcidid><orcidid>https://orcid.org/0000-0001-6544-4735</orcidid><orcidid>https://orcid.org/0000-0003-1666-0532</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-07, Vol.14 (27), p.31035-31043
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2685032568
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Functional Inorganic Materials and Devices
title Interstitial Li+ Occupancy Enabling Radiative/Nonradiative Transition Control toward Highly Efficient Cr3+-Based Near-Infrared Luminescence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interstitial%20Li+%20Occupancy%20Enabling%20Radiative/Nonradiative%20Transition%20Control%20toward%20Highly%20Efficient%20Cr3+-Based%20Near-Infrared%20Luminescence&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=He,%20Fanquan&rft.date=2022-07-13&rft.volume=14&rft.issue=27&rft.spage=31035&rft.epage=31043&rft.pages=31035-31043&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c07495&rft_dat=%3Cproquest_acs_j%3E2685032568%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a153t-f062dfb27311e194a72062a1d88655b680bcdd4f7344f71065ca576718d1e2f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2685032568&rft_id=info:pmid/&rfr_iscdi=true