Loading…

Hiplot: a comprehensive and easy-to-use web service for boosting publication-ready biomedical data visualization

Abstract Complex biomedical data generated during clinical, omics and mechanism-based experiments have increasingly been exploited through cloud- and visualization-based data mining techniques. However, the scientific community still lacks an easy-to-use web service for the comprehensive visualizati...

Full description

Saved in:
Bibliographic Details
Published in:Briefings in bioinformatics 2022-07, Vol.23 (4)
Main Authors: Li, Jianfeng, Miao, Benben, Wang, Shixiang, Dong, Wei, Xu, Houshi, Si, Chenchen, Wang, Wei, Duan, Songqi, Lou, Jiacheng, Bao, Zhiwei, Zeng, Hailuan, Yang, Zengzeng, Cheng, Wenyan, Zhao, Fei, Zeng, Jianming, Liu, Xue-Song, Wu, Renxie, Shen, Yang, Chen, Zhu, Chen, Saijuan, Wang, Mingjie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-a596d30ab13820305d4b43aa17983d11fd55b46a15a88925bb2a0b5f553cf0ac3
cites cdi_FETCH-LOGICAL-c362t-a596d30ab13820305d4b43aa17983d11fd55b46a15a88925bb2a0b5f553cf0ac3
container_end_page
container_issue 4
container_start_page
container_title Briefings in bioinformatics
container_volume 23
creator Li, Jianfeng
Miao, Benben
Wang, Shixiang
Dong, Wei
Xu, Houshi
Si, Chenchen
Wang, Wei
Duan, Songqi
Lou, Jiacheng
Bao, Zhiwei
Zeng, Hailuan
Yang, Zengzeng
Cheng, Wenyan
Zhao, Fei
Zeng, Jianming
Liu, Xue-Song
Wu, Renxie
Shen, Yang
Chen, Zhu
Chen, Saijuan
Wang, Mingjie
description Abstract Complex biomedical data generated during clinical, omics and mechanism-based experiments have increasingly been exploited through cloud- and visualization-based data mining techniques. However, the scientific community still lacks an easy-to-use web service for the comprehensive visualization of biomedical data, particularly high-quality and publication-ready graphics that allow easy scaling and updatability according to user demands. Therefore, we propose a community-driven modern web service, Hiplot (https://hiplot.org), with concise and top-quality data visualization applications for the life sciences and biomedical fields. This web service permits users to conveniently and interactively complete a few specialized visualization tasks that previously could only be conducted by senior bioinformatics or biostatistics researchers. It covers most of the daily demands of biomedical researchers with its equipped 240+ biomedical data visualization functions, involving basic statistics, multi-omics, regression, clustering, dimensional reduction, meta-analysis, survival analysis, risk modelling, etc. Moreover, to improve the efficiency in use and development of plugins, we introduced some core advantages on the client-/server-side of the website, such as spreadsheet-based data importing, cross-platform command-line controller (Hctl), multi-user plumber workers, JavaScript Object Notation-based plugin system, easy data/parameters, results and errors reproduction and real-time updates mode. Meanwhile, using demo/real data sets and benchmark tests, we explored statistical parameters, cancer genomic landscapes, disease risk factors and the performance of website based on selected native plugins. The statistics of visits and user numbers could further reflect the potential impact of this web service on relevant fields. Thus, researchers devoted to life and data sciences would benefit from this emerging and free web service.
doi_str_mv 10.1093/bib/bbac261
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2685033324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbac261</oup_id><sourcerecordid>2699592300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-a596d30ab13820305d4b43aa17983d11fd55b46a15a88925bb2a0b5f553cf0ac3</originalsourceid><addsrcrecordid>eNp90MlKA0EQBuBGFIzRky_QIIggbXqdxZsENwh40fNQvYx2mEyP3TOR-PROTE4ePFVRfPwUP0LnjN4wWoqZ9nqmNRiesQM0YTLPiaRKHm73LCdKZuIYnaS0pJTTvGAT1D35rgn9LQZswqqL7sO1ya8dhtZiB2lD-kCG5PCX0zi5uPbG4TpErENIvW_fcTfoxhvofWhJdGA3WPuwcna8NdhCD3jt0wCN__41p-iohia5s_2coreH-9f5E1m8PD7P7xbEiIz3BFSZWUFBM1FwKqiyUksBwPKyEJax2iqlZQZMQVGUXGnNgWpVKyVMTcGIKbra5XYxfA4u9dXKJ-OaBloXhlTxrFBUCMHlSC_-0GUYYjt-N6qyVCUXlI7qeqdMDClFV1dd9CuIm4rRatt-NbZf7dsf9eVOh6H7F_4As16GnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699592300</pqid></control><display><type>article</type><title>Hiplot: a comprehensive and easy-to-use web service for boosting publication-ready biomedical data visualization</title><source>OUP_牛津大学出版社OA刊</source><creator>Li, Jianfeng ; Miao, Benben ; Wang, Shixiang ; Dong, Wei ; Xu, Houshi ; Si, Chenchen ; Wang, Wei ; Duan, Songqi ; Lou, Jiacheng ; Bao, Zhiwei ; Zeng, Hailuan ; Yang, Zengzeng ; Cheng, Wenyan ; Zhao, Fei ; Zeng, Jianming ; Liu, Xue-Song ; Wu, Renxie ; Shen, Yang ; Chen, Zhu ; Chen, Saijuan ; Wang, Mingjie</creator><creatorcontrib>Li, Jianfeng ; Miao, Benben ; Wang, Shixiang ; Dong, Wei ; Xu, Houshi ; Si, Chenchen ; Wang, Wei ; Duan, Songqi ; Lou, Jiacheng ; Bao, Zhiwei ; Zeng, Hailuan ; Yang, Zengzeng ; Cheng, Wenyan ; Zhao, Fei ; Zeng, Jianming ; Liu, Xue-Song ; Wu, Renxie ; Shen, Yang ; Chen, Zhu ; Chen, Saijuan ; Wang, Mingjie ; Hiplot Consortium</creatorcontrib><description>Abstract Complex biomedical data generated during clinical, omics and mechanism-based experiments have increasingly been exploited through cloud- and visualization-based data mining techniques. However, the scientific community still lacks an easy-to-use web service for the comprehensive visualization of biomedical data, particularly high-quality and publication-ready graphics that allow easy scaling and updatability according to user demands. Therefore, we propose a community-driven modern web service, Hiplot (https://hiplot.org), with concise and top-quality data visualization applications for the life sciences and biomedical fields. This web service permits users to conveniently and interactively complete a few specialized visualization tasks that previously could only be conducted by senior bioinformatics or biostatistics researchers. It covers most of the daily demands of biomedical researchers with its equipped 240+ biomedical data visualization functions, involving basic statistics, multi-omics, regression, clustering, dimensional reduction, meta-analysis, survival analysis, risk modelling, etc. Moreover, to improve the efficiency in use and development of plugins, we introduced some core advantages on the client-/server-side of the website, such as spreadsheet-based data importing, cross-platform command-line controller (Hctl), multi-user plumber workers, JavaScript Object Notation-based plugin system, easy data/parameters, results and errors reproduction and real-time updates mode. Meanwhile, using demo/real data sets and benchmark tests, we explored statistical parameters, cancer genomic landscapes, disease risk factors and the performance of website based on selected native plugins. The statistics of visits and user numbers could further reflect the potential impact of this web service on relevant fields. Thus, researchers devoted to life and data sciences would benefit from this emerging and free web service.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbac261</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Bioinformatics ; Biomedical data ; Clustering ; Data mining ; Data transfer (computers) ; Dimensional analysis ; Health risks ; Medical research ; Parameters ; Risk analysis ; Risk factors ; Scientific visualization ; Statistical analysis ; Survival analysis ; Visualization ; Web services ; Websites</subject><ispartof>Briefings in bioinformatics, 2022-07, Vol.23 (4)</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-a596d30ab13820305d4b43aa17983d11fd55b46a15a88925bb2a0b5f553cf0ac3</citedby><cites>FETCH-LOGICAL-c362t-a596d30ab13820305d4b43aa17983d11fd55b46a15a88925bb2a0b5f553cf0ac3</cites><orcidid>0000-0001-9855-7357 ; 0000-0002-7307-1331 ; 0000-0003-2349-208X ; 0000-0002-4922-1707 ; 0000-0002-0822-5883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bib/bbac261$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Li, Jianfeng</creatorcontrib><creatorcontrib>Miao, Benben</creatorcontrib><creatorcontrib>Wang, Shixiang</creatorcontrib><creatorcontrib>Dong, Wei</creatorcontrib><creatorcontrib>Xu, Houshi</creatorcontrib><creatorcontrib>Si, Chenchen</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Duan, Songqi</creatorcontrib><creatorcontrib>Lou, Jiacheng</creatorcontrib><creatorcontrib>Bao, Zhiwei</creatorcontrib><creatorcontrib>Zeng, Hailuan</creatorcontrib><creatorcontrib>Yang, Zengzeng</creatorcontrib><creatorcontrib>Cheng, Wenyan</creatorcontrib><creatorcontrib>Zhao, Fei</creatorcontrib><creatorcontrib>Zeng, Jianming</creatorcontrib><creatorcontrib>Liu, Xue-Song</creatorcontrib><creatorcontrib>Wu, Renxie</creatorcontrib><creatorcontrib>Shen, Yang</creatorcontrib><creatorcontrib>Chen, Zhu</creatorcontrib><creatorcontrib>Chen, Saijuan</creatorcontrib><creatorcontrib>Wang, Mingjie</creatorcontrib><creatorcontrib>Hiplot Consortium</creatorcontrib><title>Hiplot: a comprehensive and easy-to-use web service for boosting publication-ready biomedical data visualization</title><title>Briefings in bioinformatics</title><description>Abstract Complex biomedical data generated during clinical, omics and mechanism-based experiments have increasingly been exploited through cloud- and visualization-based data mining techniques. However, the scientific community still lacks an easy-to-use web service for the comprehensive visualization of biomedical data, particularly high-quality and publication-ready graphics that allow easy scaling and updatability according to user demands. Therefore, we propose a community-driven modern web service, Hiplot (https://hiplot.org), with concise and top-quality data visualization applications for the life sciences and biomedical fields. This web service permits users to conveniently and interactively complete a few specialized visualization tasks that previously could only be conducted by senior bioinformatics or biostatistics researchers. It covers most of the daily demands of biomedical researchers with its equipped 240+ biomedical data visualization functions, involving basic statistics, multi-omics, regression, clustering, dimensional reduction, meta-analysis, survival analysis, risk modelling, etc. Moreover, to improve the efficiency in use and development of plugins, we introduced some core advantages on the client-/server-side of the website, such as spreadsheet-based data importing, cross-platform command-line controller (Hctl), multi-user plumber workers, JavaScript Object Notation-based plugin system, easy data/parameters, results and errors reproduction and real-time updates mode. Meanwhile, using demo/real data sets and benchmark tests, we explored statistical parameters, cancer genomic landscapes, disease risk factors and the performance of website based on selected native plugins. The statistics of visits and user numbers could further reflect the potential impact of this web service on relevant fields. Thus, researchers devoted to life and data sciences would benefit from this emerging and free web service.</description><subject>Bioinformatics</subject><subject>Biomedical data</subject><subject>Clustering</subject><subject>Data mining</subject><subject>Data transfer (computers)</subject><subject>Dimensional analysis</subject><subject>Health risks</subject><subject>Medical research</subject><subject>Parameters</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Scientific visualization</subject><subject>Statistical analysis</subject><subject>Survival analysis</subject><subject>Visualization</subject><subject>Web services</subject><subject>Websites</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90MlKA0EQBuBGFIzRky_QIIggbXqdxZsENwh40fNQvYx2mEyP3TOR-PROTE4ePFVRfPwUP0LnjN4wWoqZ9nqmNRiesQM0YTLPiaRKHm73LCdKZuIYnaS0pJTTvGAT1D35rgn9LQZswqqL7sO1ya8dhtZiB2lD-kCG5PCX0zi5uPbG4TpErENIvW_fcTfoxhvofWhJdGA3WPuwcna8NdhCD3jt0wCN__41p-iohia5s_2coreH-9f5E1m8PD7P7xbEiIz3BFSZWUFBM1FwKqiyUksBwPKyEJax2iqlZQZMQVGUXGnNgWpVKyVMTcGIKbra5XYxfA4u9dXKJ-OaBloXhlTxrFBUCMHlSC_-0GUYYjt-N6qyVCUXlI7qeqdMDClFV1dd9CuIm4rRatt-NbZf7dsf9eVOh6H7F_4As16GnQ</recordid><startdate>20220718</startdate><enddate>20220718</enddate><creator>Li, Jianfeng</creator><creator>Miao, Benben</creator><creator>Wang, Shixiang</creator><creator>Dong, Wei</creator><creator>Xu, Houshi</creator><creator>Si, Chenchen</creator><creator>Wang, Wei</creator><creator>Duan, Songqi</creator><creator>Lou, Jiacheng</creator><creator>Bao, Zhiwei</creator><creator>Zeng, Hailuan</creator><creator>Yang, Zengzeng</creator><creator>Cheng, Wenyan</creator><creator>Zhao, Fei</creator><creator>Zeng, Jianming</creator><creator>Liu, Xue-Song</creator><creator>Wu, Renxie</creator><creator>Shen, Yang</creator><creator>Chen, Zhu</creator><creator>Chen, Saijuan</creator><creator>Wang, Mingjie</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9855-7357</orcidid><orcidid>https://orcid.org/0000-0002-7307-1331</orcidid><orcidid>https://orcid.org/0000-0003-2349-208X</orcidid><orcidid>https://orcid.org/0000-0002-4922-1707</orcidid><orcidid>https://orcid.org/0000-0002-0822-5883</orcidid></search><sort><creationdate>20220718</creationdate><title>Hiplot: a comprehensive and easy-to-use web service for boosting publication-ready biomedical data visualization</title><author>Li, Jianfeng ; Miao, Benben ; Wang, Shixiang ; Dong, Wei ; Xu, Houshi ; Si, Chenchen ; Wang, Wei ; Duan, Songqi ; Lou, Jiacheng ; Bao, Zhiwei ; Zeng, Hailuan ; Yang, Zengzeng ; Cheng, Wenyan ; Zhao, Fei ; Zeng, Jianming ; Liu, Xue-Song ; Wu, Renxie ; Shen, Yang ; Chen, Zhu ; Chen, Saijuan ; Wang, Mingjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-a596d30ab13820305d4b43aa17983d11fd55b46a15a88925bb2a0b5f553cf0ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bioinformatics</topic><topic>Biomedical data</topic><topic>Clustering</topic><topic>Data mining</topic><topic>Data transfer (computers)</topic><topic>Dimensional analysis</topic><topic>Health risks</topic><topic>Medical research</topic><topic>Parameters</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Scientific visualization</topic><topic>Statistical analysis</topic><topic>Survival analysis</topic><topic>Visualization</topic><topic>Web services</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jianfeng</creatorcontrib><creatorcontrib>Miao, Benben</creatorcontrib><creatorcontrib>Wang, Shixiang</creatorcontrib><creatorcontrib>Dong, Wei</creatorcontrib><creatorcontrib>Xu, Houshi</creatorcontrib><creatorcontrib>Si, Chenchen</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Duan, Songqi</creatorcontrib><creatorcontrib>Lou, Jiacheng</creatorcontrib><creatorcontrib>Bao, Zhiwei</creatorcontrib><creatorcontrib>Zeng, Hailuan</creatorcontrib><creatorcontrib>Yang, Zengzeng</creatorcontrib><creatorcontrib>Cheng, Wenyan</creatorcontrib><creatorcontrib>Zhao, Fei</creatorcontrib><creatorcontrib>Zeng, Jianming</creatorcontrib><creatorcontrib>Liu, Xue-Song</creatorcontrib><creatorcontrib>Wu, Renxie</creatorcontrib><creatorcontrib>Shen, Yang</creatorcontrib><creatorcontrib>Chen, Zhu</creatorcontrib><creatorcontrib>Chen, Saijuan</creatorcontrib><creatorcontrib>Wang, Mingjie</creatorcontrib><creatorcontrib>Hiplot Consortium</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Jianfeng</au><au>Miao, Benben</au><au>Wang, Shixiang</au><au>Dong, Wei</au><au>Xu, Houshi</au><au>Si, Chenchen</au><au>Wang, Wei</au><au>Duan, Songqi</au><au>Lou, Jiacheng</au><au>Bao, Zhiwei</au><au>Zeng, Hailuan</au><au>Yang, Zengzeng</au><au>Cheng, Wenyan</au><au>Zhao, Fei</au><au>Zeng, Jianming</au><au>Liu, Xue-Song</au><au>Wu, Renxie</au><au>Shen, Yang</au><au>Chen, Zhu</au><au>Chen, Saijuan</au><au>Wang, Mingjie</au><aucorp>Hiplot Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hiplot: a comprehensive and easy-to-use web service for boosting publication-ready biomedical data visualization</atitle><jtitle>Briefings in bioinformatics</jtitle><date>2022-07-18</date><risdate>2022</risdate><volume>23</volume><issue>4</issue><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract Complex biomedical data generated during clinical, omics and mechanism-based experiments have increasingly been exploited through cloud- and visualization-based data mining techniques. However, the scientific community still lacks an easy-to-use web service for the comprehensive visualization of biomedical data, particularly high-quality and publication-ready graphics that allow easy scaling and updatability according to user demands. Therefore, we propose a community-driven modern web service, Hiplot (https://hiplot.org), with concise and top-quality data visualization applications for the life sciences and biomedical fields. This web service permits users to conveniently and interactively complete a few specialized visualization tasks that previously could only be conducted by senior bioinformatics or biostatistics researchers. It covers most of the daily demands of biomedical researchers with its equipped 240+ biomedical data visualization functions, involving basic statistics, multi-omics, regression, clustering, dimensional reduction, meta-analysis, survival analysis, risk modelling, etc. Moreover, to improve the efficiency in use and development of plugins, we introduced some core advantages on the client-/server-side of the website, such as spreadsheet-based data importing, cross-platform command-line controller (Hctl), multi-user plumber workers, JavaScript Object Notation-based plugin system, easy data/parameters, results and errors reproduction and real-time updates mode. Meanwhile, using demo/real data sets and benchmark tests, we explored statistical parameters, cancer genomic landscapes, disease risk factors and the performance of website based on selected native plugins. The statistics of visits and user numbers could further reflect the potential impact of this web service on relevant fields. Thus, researchers devoted to life and data sciences would benefit from this emerging and free web service.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/bib/bbac261</doi><orcidid>https://orcid.org/0000-0001-9855-7357</orcidid><orcidid>https://orcid.org/0000-0002-7307-1331</orcidid><orcidid>https://orcid.org/0000-0003-2349-208X</orcidid><orcidid>https://orcid.org/0000-0002-4922-1707</orcidid><orcidid>https://orcid.org/0000-0002-0822-5883</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1467-5463
ispartof Briefings in bioinformatics, 2022-07, Vol.23 (4)
issn 1467-5463
1477-4054
language eng
recordid cdi_proquest_miscellaneous_2685033324
source OUP_牛津大学出版社OA刊
subjects Bioinformatics
Biomedical data
Clustering
Data mining
Data transfer (computers)
Dimensional analysis
Health risks
Medical research
Parameters
Risk analysis
Risk factors
Scientific visualization
Statistical analysis
Survival analysis
Visualization
Web services
Websites
title Hiplot: a comprehensive and easy-to-use web service for boosting publication-ready biomedical data visualization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hiplot:%20a%20comprehensive%20and%20easy-to-use%20web%20service%20for%20boosting%20publication-ready%20biomedical%20data%20visualization&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Li,%20Jianfeng&rft.aucorp=Hiplot%20Consortium&rft.date=2022-07-18&rft.volume=23&rft.issue=4&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbac261&rft_dat=%3Cproquest_TOX%3E2699592300%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-a596d30ab13820305d4b43aa17983d11fd55b46a15a88925bb2a0b5f553cf0ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2699592300&rft_id=info:pmid/&rft_oup_id=10.1093/bib/bbac261&rfr_iscdi=true