Loading…

Electrospun Nanofibrous Membranes Accelerate Biofilm Formation and Probiotic Enrichment: Enhanced Tolerances to pH and Antibiotics

Biofilms are the oldest, most successful, and most widely distributed form of microorganism life on earth, existing even in extreme environments. Presently, probiotics in biofilm phenotype are thought as the most advanced fourth-generation probiotics. However, high-efficiency and large-scale biofilm...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2022-07, Vol.14 (28), p.31601-31612
Main Authors: Hu, Meng-Xin, He, Fei, Zhao, Zi-Shu, Guo, Ya-Xin, Ma, Xue-Ke, Tu, Cheng-Kai, Teng, Hui, Chen, Zhe-Xin, Yan, Hong, Shao, Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a237t-223ec2a6a06358af8fd8df75cac82a0e4d458724664d7620b08322f4deb10eef3
cites cdi_FETCH-LOGICAL-a237t-223ec2a6a06358af8fd8df75cac82a0e4d458724664d7620b08322f4deb10eef3
container_end_page 31612
container_issue 28
container_start_page 31601
container_title ACS applied materials & interfaces
container_volume 14
creator Hu, Meng-Xin
He, Fei
Zhao, Zi-Shu
Guo, Ya-Xin
Ma, Xue-Ke
Tu, Cheng-Kai
Teng, Hui
Chen, Zhe-Xin
Yan, Hong
Shao, Xin
description Biofilms are the oldest, most successful, and most widely distributed form of microorganism life on earth, existing even in extreme environments. Presently, probiotics in biofilm phenotype are thought as the most advanced fourth-generation probiotics. However, high-efficiency and large-scale biofilm enrichment in an artificial way is difficult. Here, fibrous membranes as probiotic biofilm-enriching materials are studied. Electrospun cellulose acetate nanofibrous membranes with nano-sized fibers show outstanding superiority over fibrous membranes with micron-sized fibers in Lactobacillus paracasei biofilm enrichment. The special 3D structure of electrospun nanofibrous membranes makes other facilitating biofilm formation factors insignificant. With a suitable scaffold/culture medium ratio, nearly 100% of L. paracasei cells exist as biofilm phenotype on the membrane from the very beginning, not planktonic state. L. paracasei biofilms possess a potential for long-term survival and high tolerances toward strong acidic and alkali conditions and antibiotics. RNA sequencing results explain why L. paracasei biofilms possess high tolerances toward harsh environments as compared to planktonic L. paracasei. Electrospun nanofibrous membranes can serve as powerful biofilm-enriching scaffolds for probiotics and other valuable microbes.
doi_str_mv 10.1021/acsami.2c04540
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2685445540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685445540</sourcerecordid><originalsourceid>FETCH-LOGICAL-a237t-223ec2a6a06358af8fd8df75cac82a0e4d458724664d7620b08322f4deb10eef3</originalsourceid><addsrcrecordid>eNp1kM9PwyAcxYnRxDm9euZoTDophRa9zWVzJvPHYZ4JpZCxtFCBHrz6l8vs4s0TL3zf--b7PgBc52iWI5zfCRlEZ2ZYIkIJOgGT_J6QjGGKT_80IefgIoQ9QmWBEZ2A72WrZPQu9IOFr8I6bWrvhgBfVFd7YVWAcylVq7yICj6aNG87uHK-E9E4C4Vt4Lt3tXHRSLi03shdp2x8SHonrFQN3LpDOskAo4P9-jczt9GMoXAJzrRog7o6vlPwsVpuF-ts8_b0vJhvMoGLKmYYF0piUYp0OmVCM92wRldUCsmwQIo0hLIKk7IkTVViVCNWYKxJo-ocKaWLKbgZ9_befQ4qRN6ZkKq1qWVqzHHJKCE0sUvW2WiViUzwSvPem074L54jfoDNR9j8CDsFbsdA-ud7N3ibmvxn_gF0doPS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685445540</pqid></control><display><type>article</type><title>Electrospun Nanofibrous Membranes Accelerate Biofilm Formation and Probiotic Enrichment: Enhanced Tolerances to pH and Antibiotics</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hu, Meng-Xin ; He, Fei ; Zhao, Zi-Shu ; Guo, Ya-Xin ; Ma, Xue-Ke ; Tu, Cheng-Kai ; Teng, Hui ; Chen, Zhe-Xin ; Yan, Hong ; Shao, Xin</creator><creatorcontrib>Hu, Meng-Xin ; He, Fei ; Zhao, Zi-Shu ; Guo, Ya-Xin ; Ma, Xue-Ke ; Tu, Cheng-Kai ; Teng, Hui ; Chen, Zhe-Xin ; Yan, Hong ; Shao, Xin</creatorcontrib><description>Biofilms are the oldest, most successful, and most widely distributed form of microorganism life on earth, existing even in extreme environments. Presently, probiotics in biofilm phenotype are thought as the most advanced fourth-generation probiotics. However, high-efficiency and large-scale biofilm enrichment in an artificial way is difficult. Here, fibrous membranes as probiotic biofilm-enriching materials are studied. Electrospun cellulose acetate nanofibrous membranes with nano-sized fibers show outstanding superiority over fibrous membranes with micron-sized fibers in Lactobacillus paracasei biofilm enrichment. The special 3D structure of electrospun nanofibrous membranes makes other facilitating biofilm formation factors insignificant. With a suitable scaffold/culture medium ratio, nearly 100% of L. paracasei cells exist as biofilm phenotype on the membrane from the very beginning, not planktonic state. L. paracasei biofilms possess a potential for long-term survival and high tolerances toward strong acidic and alkali conditions and antibiotics. RNA sequencing results explain why L. paracasei biofilms possess high tolerances toward harsh environments as compared to planktonic L. paracasei. Electrospun nanofibrous membranes can serve as powerful biofilm-enriching scaffolds for probiotics and other valuable microbes.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c04540</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Biological and Medical Applications of Materials and Interfaces</subject><ispartof>ACS applied materials &amp; interfaces, 2022-07, Vol.14 (28), p.31601-31612</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a237t-223ec2a6a06358af8fd8df75cac82a0e4d458724664d7620b08322f4deb10eef3</citedby><cites>FETCH-LOGICAL-a237t-223ec2a6a06358af8fd8df75cac82a0e4d458724664d7620b08322f4deb10eef3</cites><orcidid>0000-0001-5912-601X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hu, Meng-Xin</creatorcontrib><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Zhao, Zi-Shu</creatorcontrib><creatorcontrib>Guo, Ya-Xin</creatorcontrib><creatorcontrib>Ma, Xue-Ke</creatorcontrib><creatorcontrib>Tu, Cheng-Kai</creatorcontrib><creatorcontrib>Teng, Hui</creatorcontrib><creatorcontrib>Chen, Zhe-Xin</creatorcontrib><creatorcontrib>Yan, Hong</creatorcontrib><creatorcontrib>Shao, Xin</creatorcontrib><title>Electrospun Nanofibrous Membranes Accelerate Biofilm Formation and Probiotic Enrichment: Enhanced Tolerances to pH and Antibiotics</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Biofilms are the oldest, most successful, and most widely distributed form of microorganism life on earth, existing even in extreme environments. Presently, probiotics in biofilm phenotype are thought as the most advanced fourth-generation probiotics. However, high-efficiency and large-scale biofilm enrichment in an artificial way is difficult. Here, fibrous membranes as probiotic biofilm-enriching materials are studied. Electrospun cellulose acetate nanofibrous membranes with nano-sized fibers show outstanding superiority over fibrous membranes with micron-sized fibers in Lactobacillus paracasei biofilm enrichment. The special 3D structure of electrospun nanofibrous membranes makes other facilitating biofilm formation factors insignificant. With a suitable scaffold/culture medium ratio, nearly 100% of L. paracasei cells exist as biofilm phenotype on the membrane from the very beginning, not planktonic state. L. paracasei biofilms possess a potential for long-term survival and high tolerances toward strong acidic and alkali conditions and antibiotics. RNA sequencing results explain why L. paracasei biofilms possess high tolerances toward harsh environments as compared to planktonic L. paracasei. Electrospun nanofibrous membranes can serve as powerful biofilm-enriching scaffolds for probiotics and other valuable microbes.</description><subject>Biological and Medical Applications of Materials and Interfaces</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM9PwyAcxYnRxDm9euZoTDophRa9zWVzJvPHYZ4JpZCxtFCBHrz6l8vs4s0TL3zf--b7PgBc52iWI5zfCRlEZ2ZYIkIJOgGT_J6QjGGKT_80IefgIoQ9QmWBEZ2A72WrZPQu9IOFr8I6bWrvhgBfVFd7YVWAcylVq7yICj6aNG87uHK-E9E4C4Vt4Lt3tXHRSLi03shdp2x8SHonrFQN3LpDOskAo4P9-jczt9GMoXAJzrRog7o6vlPwsVpuF-ts8_b0vJhvMoGLKmYYF0piUYp0OmVCM92wRldUCsmwQIo0hLIKk7IkTVViVCNWYKxJo-ocKaWLKbgZ9_befQ4qRN6ZkKq1qWVqzHHJKCE0sUvW2WiViUzwSvPem074L54jfoDNR9j8CDsFbsdA-ud7N3ibmvxn_gF0doPS</recordid><startdate>20220720</startdate><enddate>20220720</enddate><creator>Hu, Meng-Xin</creator><creator>He, Fei</creator><creator>Zhao, Zi-Shu</creator><creator>Guo, Ya-Xin</creator><creator>Ma, Xue-Ke</creator><creator>Tu, Cheng-Kai</creator><creator>Teng, Hui</creator><creator>Chen, Zhe-Xin</creator><creator>Yan, Hong</creator><creator>Shao, Xin</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5912-601X</orcidid></search><sort><creationdate>20220720</creationdate><title>Electrospun Nanofibrous Membranes Accelerate Biofilm Formation and Probiotic Enrichment: Enhanced Tolerances to pH and Antibiotics</title><author>Hu, Meng-Xin ; He, Fei ; Zhao, Zi-Shu ; Guo, Ya-Xin ; Ma, Xue-Ke ; Tu, Cheng-Kai ; Teng, Hui ; Chen, Zhe-Xin ; Yan, Hong ; Shao, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a237t-223ec2a6a06358af8fd8df75cac82a0e4d458724664d7620b08322f4deb10eef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological and Medical Applications of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Meng-Xin</creatorcontrib><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Zhao, Zi-Shu</creatorcontrib><creatorcontrib>Guo, Ya-Xin</creatorcontrib><creatorcontrib>Ma, Xue-Ke</creatorcontrib><creatorcontrib>Tu, Cheng-Kai</creatorcontrib><creatorcontrib>Teng, Hui</creatorcontrib><creatorcontrib>Chen, Zhe-Xin</creatorcontrib><creatorcontrib>Yan, Hong</creatorcontrib><creatorcontrib>Shao, Xin</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Meng-Xin</au><au>He, Fei</au><au>Zhao, Zi-Shu</au><au>Guo, Ya-Xin</au><au>Ma, Xue-Ke</au><au>Tu, Cheng-Kai</au><au>Teng, Hui</au><au>Chen, Zhe-Xin</au><au>Yan, Hong</au><au>Shao, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospun Nanofibrous Membranes Accelerate Biofilm Formation and Probiotic Enrichment: Enhanced Tolerances to pH and Antibiotics</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-07-20</date><risdate>2022</risdate><volume>14</volume><issue>28</issue><spage>31601</spage><epage>31612</epage><pages>31601-31612</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Biofilms are the oldest, most successful, and most widely distributed form of microorganism life on earth, existing even in extreme environments. Presently, probiotics in biofilm phenotype are thought as the most advanced fourth-generation probiotics. However, high-efficiency and large-scale biofilm enrichment in an artificial way is difficult. Here, fibrous membranes as probiotic biofilm-enriching materials are studied. Electrospun cellulose acetate nanofibrous membranes with nano-sized fibers show outstanding superiority over fibrous membranes with micron-sized fibers in Lactobacillus paracasei biofilm enrichment. The special 3D structure of electrospun nanofibrous membranes makes other facilitating biofilm formation factors insignificant. With a suitable scaffold/culture medium ratio, nearly 100% of L. paracasei cells exist as biofilm phenotype on the membrane from the very beginning, not planktonic state. L. paracasei biofilms possess a potential for long-term survival and high tolerances toward strong acidic and alkali conditions and antibiotics. RNA sequencing results explain why L. paracasei biofilms possess high tolerances toward harsh environments as compared to planktonic L. paracasei. Electrospun nanofibrous membranes can serve as powerful biofilm-enriching scaffolds for probiotics and other valuable microbes.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c04540</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5912-601X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-07, Vol.14 (28), p.31601-31612
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2685445540
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Biological and Medical Applications of Materials and Interfaces
title Electrospun Nanofibrous Membranes Accelerate Biofilm Formation and Probiotic Enrichment: Enhanced Tolerances to pH and Antibiotics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospun%20Nanofibrous%20Membranes%20Accelerate%20Biofilm%20Formation%20and%20Probiotic%20Enrichment:%20Enhanced%20Tolerances%20to%20pH%20and%20Antibiotics&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Hu,%20Meng-Xin&rft.date=2022-07-20&rft.volume=14&rft.issue=28&rft.spage=31601&rft.epage=31612&rft.pages=31601-31612&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c04540&rft_dat=%3Cproquest_cross%3E2685445540%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a237t-223ec2a6a06358af8fd8df75cac82a0e4d458724664d7620b08322f4deb10eef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2685445540&rft_id=info:pmid/&rfr_iscdi=true