Loading…

Possible Co-Evolution of Polyglutamine and Polyproline in Huntingtin Protein: Proline-Rich Domain as Transient Folding Chaperone

Huntington’s disease is an inherited neurodegenerative disorder caused by the overduplication of CAG repeats in the Huntingtin gene. Recent findings revealed that among the orthologs, the expansion of CAG repeats (polyQ) in the Huntingtin gene occurs in tandem with the duplication of CCG repeats (po...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2022-07, Vol.13 (27), p.6331-6341
Main Authors: Zhang, Leili, Kang, Hongsuk, Perez-Aguilar, Jose Manuel, Zhou, Ruhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Huntington’s disease is an inherited neurodegenerative disorder caused by the overduplication of CAG repeats in the Huntingtin gene. Recent findings revealed that among the orthologs, the expansion of CAG repeats (polyQ) in the Huntingtin gene occurs in tandem with the duplication of CCG repeats (polyP). However, the molecular mechanism of this possible co-evolution remains unknown. We examined the structures of Huntingtin exon 1 (HttEx1) from six species along with five designed mutants. We found that the polyP segments “chaperone” the rest of the HttEx1 by forming ad hoc polyP binding grooves. Such a process elongates the otherwise poorly solvated polyQ domain, while modulating its secondary structure propensity from β-strands to α-helices. This chaperoning effect is achieved mostly through transient hydrogen bond interactions between polyP and the rest of HttEx1, resulting in a striking golden ratio of ∼2:1 between the chain lengths of polyQ and polyP.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.2c01184