Loading…

Characterization of hydroxyapatite powders prepared by ultrasonic spray-pyrolysis technique

The hydroxyapatite (HAp) powder was prepared by the ultrasonic spray-pyrolysis technique; the characterization of the resulting powders was performed. Five kinds of the starting solutions with the Ca/P ratio of 1.67 were prepared by mixing Ca(NO3)2, (NH4)2HPO4 and HNO3; the concentrations of Ca2+ an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 1999, Vol.34 (12), p.2865-2873
Main Authors: AIZAWA, M, HANAZAWA, T, ITATANI, K, HOWELL, F. S, KISHIOKA, A
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The hydroxyapatite (HAp) powder was prepared by the ultrasonic spray-pyrolysis technique; the characterization of the resulting powders was performed. Five kinds of the starting solutions with the Ca/P ratio of 1.67 were prepared by mixing Ca(NO3)2, (NH4)2HPO4 and HNO3; the concentrations of Ca2+ and PO43− were in the ranges of 0.10 to 0.90 mol · dm−3 and 0.06 to 0.54 mol · dm−3, respectively. These solutions were sprayed into the heating zone to prepare the HAp powders. The heating zone was composed of two electric furnaces; the lower furnace was used for the evaporation of the solvent from the droplets (300–500°C) and the upper furnace for the pyrolysis of the precipitated metal salts (750–900°C). The easily sinterable HAp powder was prepared by spray-pyrolysing the solution with Ca2+ (0.50 mol · dm−3) and PO43− (0.30 mol · dm−3) at the temperatures of 800°C (the upper furnaces) and 400°C (the lower furnaces). The resulting powder was composed of the spherical particles with diameters of ∼1 μm or below. Even without the calcination and grinding operations, the relative densities of the compacts fired at 1150 and 1200°C for 5 h attained maxima ∼95%. The microstructure of the sintered compacts appeared to be uniform; the average grain size was ∼3 μm. The activation energies for the grain growth of the sintered HAp compacts were 120 to 147 kJ · mol−1 · K−1.
ISSN:0022-2461
1573-4803
DOI:10.1023/a:1004635418655