Loading…
Low-Temperature Atomic Layer Deposition of Hafnium Oxide for Gating Applications
We present a novel low-temperature (30 °C) atomic layer deposition process for hafnium oxide and apply the layers as gate dielectric to fabricate devices out of the thermally sensitive topological insulator HgTe. The key to achieving self-limiting growth at these low temperatures is the incorporatio...
Saved in:
Published in: | ACS applied materials & interfaces 2022-07, Vol.14 (29), p.33960-33967 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a novel low-temperature (30 °C) atomic layer deposition process for hafnium oxide and apply the layers as gate dielectric to fabricate devices out of the thermally sensitive topological insulator HgTe. The key to achieving self-limiting growth at these low temperatures is the incorporation of sufficiently long purge times ( ≥150 s) in the deposition cycles. We investigate the structural and compositional properties of these thin films using X-ray reflectometry and photoelectron spectroscopy, finding a growth rate of 1.6 Å per cycle and an atomic ratio of Hf/O of 1:1.85. In addition, we report on the transport properties of the microstructured devices, which are much enhanced compared to previous device generations. We determine a relative permittivity of ∼15 for our HfO2 layers. Our process considerably reduces the thermal load of the samples during microfabrication and can be adapted to a broad range of materials, enabling the fabrication of high-quality gate insulators on various temperature-sensitive materials. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.2c06176 |