Loading…
Low-Temperature Atomic Layer Deposition of Hafnium Oxide for Gating Applications
We present a novel low-temperature (30 °C) atomic layer deposition process for hafnium oxide and apply the layers as gate dielectric to fabricate devices out of the thermally sensitive topological insulator HgTe. The key to achieving self-limiting growth at these low temperatures is the incorporatio...
Saved in:
Published in: | ACS applied materials & interfaces 2022-07, Vol.14 (29), p.33960-33967 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a330t-347b1b6ec846eb0123806fb3d259a11cc17fdf55ce09e35d50776102197d69973 |
---|---|
cites | cdi_FETCH-LOGICAL-a330t-347b1b6ec846eb0123806fb3d259a11cc17fdf55ce09e35d50776102197d69973 |
container_end_page | 33967 |
container_issue | 29 |
container_start_page | 33960 |
container_title | ACS applied materials & interfaces |
container_volume | 14 |
creator | Shekhar, Pragya Shamim, Saquib Hartinger, Simon Schlereth, Raimund Hock, Volkmar Buhmann, Hartmut Kleinlein, Johannes Molenkamp, Laurens W. |
description | We present a novel low-temperature (30 °C) atomic layer deposition process for hafnium oxide and apply the layers as gate dielectric to fabricate devices out of the thermally sensitive topological insulator HgTe. The key to achieving self-limiting growth at these low temperatures is the incorporation of sufficiently long purge times ( ≥150 s) in the deposition cycles. We investigate the structural and compositional properties of these thin films using X-ray reflectometry and photoelectron spectroscopy, finding a growth rate of 1.6 Å per cycle and an atomic ratio of Hf/O of 1:1.85. In addition, we report on the transport properties of the microstructured devices, which are much enhanced compared to previous device generations. We determine a relative permittivity of ∼15 for our HfO2 layers. Our process considerably reduces the thermal load of the samples during microfabrication and can be adapted to a broad range of materials, enabling the fabrication of high-quality gate insulators on various temperature-sensitive materials. |
doi_str_mv | 10.1021/acsami.2c06176 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2689059377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689059377</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-347b1b6ec846eb0123806fb3d259a11cc17fdf55ce09e35d50776102197d69973</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoTqdXj5KjCJ350STtcUzdhMI8zHNJ00Qy2qYmLbr_3pbO3Tx93-F5H3hfAO4wWmBE8JNUQdZ2QRTiWPAzcIXTOI4Swsj56Y_jGbgOYY8QpwSxSzCjLCGIc3QF3jP3He103Wovu95ruOxcbRXM5EF7-KxbF2xnXQOdgRtpGtvXcPtjSw2N83AtO9t8wmXbVlbJkQs34MLIKujb452Dj9eX3WoTZdv122qZRZJS1EU0FgUuuFZJzHWBMKEJ4qagJWGpxFgpLExpGFMapZqykiEh-Ng4FSVPU0Hn4GHytt599Tp0eW2D0lUlG-36kBOepIilVIzoYkKVdyF4bfLW21r6Q45RPjrzacX8uOIQuD-6-6LW5Qn_m20AHidgCOZ71_tmqPqf7Rew_nuZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689059377</pqid></control><display><type>article</type><title>Low-Temperature Atomic Layer Deposition of Hafnium Oxide for Gating Applications</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Shekhar, Pragya ; Shamim, Saquib ; Hartinger, Simon ; Schlereth, Raimund ; Hock, Volkmar ; Buhmann, Hartmut ; Kleinlein, Johannes ; Molenkamp, Laurens W.</creator><creatorcontrib>Shekhar, Pragya ; Shamim, Saquib ; Hartinger, Simon ; Schlereth, Raimund ; Hock, Volkmar ; Buhmann, Hartmut ; Kleinlein, Johannes ; Molenkamp, Laurens W.</creatorcontrib><description>We present a novel low-temperature (30 °C) atomic layer deposition process for hafnium oxide and apply the layers as gate dielectric to fabricate devices out of the thermally sensitive topological insulator HgTe. The key to achieving self-limiting growth at these low temperatures is the incorporation of sufficiently long purge times ( ≥150 s) in the deposition cycles. We investigate the structural and compositional properties of these thin films using X-ray reflectometry and photoelectron spectroscopy, finding a growth rate of 1.6 Å per cycle and an atomic ratio of Hf/O of 1:1.85. In addition, we report on the transport properties of the microstructured devices, which are much enhanced compared to previous device generations. We determine a relative permittivity of ∼15 for our HfO2 layers. Our process considerably reduces the thermal load of the samples during microfabrication and can be adapted to a broad range of materials, enabling the fabrication of high-quality gate insulators on various temperature-sensitive materials.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c06176</identifier><identifier>PMID: 35820660</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Surfaces, Interfaces, and Applications</subject><ispartof>ACS applied materials & interfaces, 2022-07, Vol.14 (29), p.33960-33967</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-347b1b6ec846eb0123806fb3d259a11cc17fdf55ce09e35d50776102197d69973</citedby><cites>FETCH-LOGICAL-a330t-347b1b6ec846eb0123806fb3d259a11cc17fdf55ce09e35d50776102197d69973</cites><orcidid>0000-0002-5836-0151 ; 0000-0002-3691-1821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35820660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shekhar, Pragya</creatorcontrib><creatorcontrib>Shamim, Saquib</creatorcontrib><creatorcontrib>Hartinger, Simon</creatorcontrib><creatorcontrib>Schlereth, Raimund</creatorcontrib><creatorcontrib>Hock, Volkmar</creatorcontrib><creatorcontrib>Buhmann, Hartmut</creatorcontrib><creatorcontrib>Kleinlein, Johannes</creatorcontrib><creatorcontrib>Molenkamp, Laurens W.</creatorcontrib><title>Low-Temperature Atomic Layer Deposition of Hafnium Oxide for Gating Applications</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We present a novel low-temperature (30 °C) atomic layer deposition process for hafnium oxide and apply the layers as gate dielectric to fabricate devices out of the thermally sensitive topological insulator HgTe. The key to achieving self-limiting growth at these low temperatures is the incorporation of sufficiently long purge times ( ≥150 s) in the deposition cycles. We investigate the structural and compositional properties of these thin films using X-ray reflectometry and photoelectron spectroscopy, finding a growth rate of 1.6 Å per cycle and an atomic ratio of Hf/O of 1:1.85. In addition, we report on the transport properties of the microstructured devices, which are much enhanced compared to previous device generations. We determine a relative permittivity of ∼15 for our HfO2 layers. Our process considerably reduces the thermal load of the samples during microfabrication and can be adapted to a broad range of materials, enabling the fabrication of high-quality gate insulators on various temperature-sensitive materials.</description><subject>Surfaces, Interfaces, and Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMoTqdXj5KjCJ350STtcUzdhMI8zHNJ00Qy2qYmLbr_3pbO3Tx93-F5H3hfAO4wWmBE8JNUQdZ2QRTiWPAzcIXTOI4Swsj56Y_jGbgOYY8QpwSxSzCjLCGIc3QF3jP3He103Wovu95ruOxcbRXM5EF7-KxbF2xnXQOdgRtpGtvXcPtjSw2N83AtO9t8wmXbVlbJkQs34MLIKujb452Dj9eX3WoTZdv122qZRZJS1EU0FgUuuFZJzHWBMKEJ4qagJWGpxFgpLExpGFMapZqykiEh-Ng4FSVPU0Hn4GHytt599Tp0eW2D0lUlG-36kBOepIilVIzoYkKVdyF4bfLW21r6Q45RPjrzacX8uOIQuD-6-6LW5Qn_m20AHidgCOZ71_tmqPqf7Rew_nuZ</recordid><startdate>20220727</startdate><enddate>20220727</enddate><creator>Shekhar, Pragya</creator><creator>Shamim, Saquib</creator><creator>Hartinger, Simon</creator><creator>Schlereth, Raimund</creator><creator>Hock, Volkmar</creator><creator>Buhmann, Hartmut</creator><creator>Kleinlein, Johannes</creator><creator>Molenkamp, Laurens W.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5836-0151</orcidid><orcidid>https://orcid.org/0000-0002-3691-1821</orcidid></search><sort><creationdate>20220727</creationdate><title>Low-Temperature Atomic Layer Deposition of Hafnium Oxide for Gating Applications</title><author>Shekhar, Pragya ; Shamim, Saquib ; Hartinger, Simon ; Schlereth, Raimund ; Hock, Volkmar ; Buhmann, Hartmut ; Kleinlein, Johannes ; Molenkamp, Laurens W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-347b1b6ec846eb0123806fb3d259a11cc17fdf55ce09e35d50776102197d69973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Surfaces, Interfaces, and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shekhar, Pragya</creatorcontrib><creatorcontrib>Shamim, Saquib</creatorcontrib><creatorcontrib>Hartinger, Simon</creatorcontrib><creatorcontrib>Schlereth, Raimund</creatorcontrib><creatorcontrib>Hock, Volkmar</creatorcontrib><creatorcontrib>Buhmann, Hartmut</creatorcontrib><creatorcontrib>Kleinlein, Johannes</creatorcontrib><creatorcontrib>Molenkamp, Laurens W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shekhar, Pragya</au><au>Shamim, Saquib</au><au>Hartinger, Simon</au><au>Schlereth, Raimund</au><au>Hock, Volkmar</au><au>Buhmann, Hartmut</au><au>Kleinlein, Johannes</au><au>Molenkamp, Laurens W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Temperature Atomic Layer Deposition of Hafnium Oxide for Gating Applications</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-07-27</date><risdate>2022</risdate><volume>14</volume><issue>29</issue><spage>33960</spage><epage>33967</epage><pages>33960-33967</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We present a novel low-temperature (30 °C) atomic layer deposition process for hafnium oxide and apply the layers as gate dielectric to fabricate devices out of the thermally sensitive topological insulator HgTe. The key to achieving self-limiting growth at these low temperatures is the incorporation of sufficiently long purge times ( ≥150 s) in the deposition cycles. We investigate the structural and compositional properties of these thin films using X-ray reflectometry and photoelectron spectroscopy, finding a growth rate of 1.6 Å per cycle and an atomic ratio of Hf/O of 1:1.85. In addition, we report on the transport properties of the microstructured devices, which are much enhanced compared to previous device generations. We determine a relative permittivity of ∼15 for our HfO2 layers. Our process considerably reduces the thermal load of the samples during microfabrication and can be adapted to a broad range of materials, enabling the fabrication of high-quality gate insulators on various temperature-sensitive materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35820660</pmid><doi>10.1021/acsami.2c06176</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5836-0151</orcidid><orcidid>https://orcid.org/0000-0002-3691-1821</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2022-07, Vol.14 (29), p.33960-33967 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2689059377 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Surfaces, Interfaces, and Applications |
title | Low-Temperature Atomic Layer Deposition of Hafnium Oxide for Gating Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Temperature%20Atomic%20Layer%20Deposition%20of%20Hafnium%20Oxide%20for%20Gating%20Applications&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Shekhar,%20Pragya&rft.date=2022-07-27&rft.volume=14&rft.issue=29&rft.spage=33960&rft.epage=33967&rft.pages=33960-33967&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c06176&rft_dat=%3Cproquest_cross%3E2689059377%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-347b1b6ec846eb0123806fb3d259a11cc17fdf55ce09e35d50776102197d69973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2689059377&rft_id=info:pmid/35820660&rfr_iscdi=true |