Loading…

Controlling the average residential electric water heater power demand using fuzzy logic

This paper describes a fuzzy logic-based control strategy for shifting the average power demand of residential electric water heaters. The proposed control strategy can shift the average power demand of residential electric water heaters from periods of high demand for electricity to off-peak period...

Full description

Saved in:
Bibliographic Details
Published in:Electric power systems research 1999-12, Vol.52 (3), p.267-271
Main Authors: LaMeres, B.J, Nehrir, M.H, Gerez, V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-63440e1f5d9e29f138655b6381dd0179fe891d6b0f20855e72c13ac763f91ab23
cites cdi_FETCH-LOGICAL-c338t-63440e1f5d9e29f138655b6381dd0179fe891d6b0f20855e72c13ac763f91ab23
container_end_page 271
container_issue 3
container_start_page 267
container_title Electric power systems research
container_volume 52
creator LaMeres, B.J
Nehrir, M.H
Gerez, V
description This paper describes a fuzzy logic-based control strategy for shifting the average power demand of residential electric water heaters. The proposed control strategy can shift the average power demand of residential electric water heaters from periods of high demand for electricity to off-peak periods. A minimum temperature for hot water, defined as customer comfort level, is used as a control variable. Water temperature is not allowed to fall below the minimum temperature set by the customer. Simulation results show that the proposed strategy can shift the average power demand of residential water heaters to improve the load factor of residential load profile.
doi_str_mv 10.1016/S0378-7796(99)00022-X
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26905786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037877969900022X</els_id><sourcerecordid>26905786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-63440e1f5d9e29f138655b6381dd0179fe891d6b0f20855e72c13ac763f91ab23</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QchKdDGaRyeZrESKLyi4UKG7kCY3bSSdqcm0pf31Tltx6-aezXcO3A-hS0puKaHi7p1wWRVSKnGt1A0hhLFifIR6tJK8YGQgjlHvDzlFZzl_dZBQsuyh8bCp29TEGOopbmeAzQqSmQJOkIODug0mYohg2xQsXpsWEp7BPhbNursO5qZ2eJl3A3653W5wbKbBnqMTb2KGi9_so8-nx4_hSzF6e34dPowKy3nVFoIPBgSoL50CpjzllSjLieAVdY5QqTxUijoxIZ6RqixBMku5sVJwr6iZMN5HV4fdRWq-l5BbPQ_ZQoymhmaZNROKlLISHVgeQJuanBN4vUhhbtJGU6J3HvXeo95J0krpvUc97nr3hx50X6wCJJ1tgNqCC6nTol0T_ln4AbD3e4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26905786</pqid></control><display><type>article</type><title>Controlling the average residential electric water heater power demand using fuzzy logic</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>LaMeres, B.J ; Nehrir, M.H ; Gerez, V</creator><creatorcontrib>LaMeres, B.J ; Nehrir, M.H ; Gerez, V</creatorcontrib><description>This paper describes a fuzzy logic-based control strategy for shifting the average power demand of residential electric water heaters. The proposed control strategy can shift the average power demand of residential electric water heaters from periods of high demand for electricity to off-peak periods. A minimum temperature for hot water, defined as customer comfort level, is used as a control variable. Water temperature is not allowed to fall below the minimum temperature set by the customer. Simulation results show that the proposed strategy can shift the average power demand of residential water heaters to improve the load factor of residential load profile.</description><identifier>ISSN: 0378-7796</identifier><identifier>EISSN: 1873-2046</identifier><identifier>DOI: 10.1016/S0378-7796(99)00022-X</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Electric water heater ; Fuzzy logic ; Power demand</subject><ispartof>Electric power systems research, 1999-12, Vol.52 (3), p.267-271</ispartof><rights>1999 Elsevier Science S.A.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-63440e1f5d9e29f138655b6381dd0179fe891d6b0f20855e72c13ac763f91ab23</citedby><cites>FETCH-LOGICAL-c338t-63440e1f5d9e29f138655b6381dd0179fe891d6b0f20855e72c13ac763f91ab23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>LaMeres, B.J</creatorcontrib><creatorcontrib>Nehrir, M.H</creatorcontrib><creatorcontrib>Gerez, V</creatorcontrib><title>Controlling the average residential electric water heater power demand using fuzzy logic</title><title>Electric power systems research</title><description>This paper describes a fuzzy logic-based control strategy for shifting the average power demand of residential electric water heaters. The proposed control strategy can shift the average power demand of residential electric water heaters from periods of high demand for electricity to off-peak periods. A minimum temperature for hot water, defined as customer comfort level, is used as a control variable. Water temperature is not allowed to fall below the minimum temperature set by the customer. Simulation results show that the proposed strategy can shift the average power demand of residential water heaters to improve the load factor of residential load profile.</description><subject>Electric water heater</subject><subject>Fuzzy logic</subject><subject>Power demand</subject><issn>0378-7796</issn><issn>1873-2046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QchKdDGaRyeZrESKLyi4UKG7kCY3bSSdqcm0pf31Tltx6-aezXcO3A-hS0puKaHi7p1wWRVSKnGt1A0hhLFifIR6tJK8YGQgjlHvDzlFZzl_dZBQsuyh8bCp29TEGOopbmeAzQqSmQJOkIODug0mYohg2xQsXpsWEp7BPhbNursO5qZ2eJl3A3653W5wbKbBnqMTb2KGi9_so8-nx4_hSzF6e34dPowKy3nVFoIPBgSoL50CpjzllSjLieAVdY5QqTxUijoxIZ6RqixBMku5sVJwr6iZMN5HV4fdRWq-l5BbPQ_ZQoymhmaZNROKlLISHVgeQJuanBN4vUhhbtJGU6J3HvXeo95J0krpvUc97nr3hx50X6wCJJ1tgNqCC6nTol0T_ln4AbD3e4I</recordid><startdate>19991201</startdate><enddate>19991201</enddate><creator>LaMeres, B.J</creator><creator>Nehrir, M.H</creator><creator>Gerez, V</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19991201</creationdate><title>Controlling the average residential electric water heater power demand using fuzzy logic</title><author>LaMeres, B.J ; Nehrir, M.H ; Gerez, V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-63440e1f5d9e29f138655b6381dd0179fe891d6b0f20855e72c13ac763f91ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Electric water heater</topic><topic>Fuzzy logic</topic><topic>Power demand</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LaMeres, B.J</creatorcontrib><creatorcontrib>Nehrir, M.H</creatorcontrib><creatorcontrib>Gerez, V</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electric power systems research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LaMeres, B.J</au><au>Nehrir, M.H</au><au>Gerez, V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the average residential electric water heater power demand using fuzzy logic</atitle><jtitle>Electric power systems research</jtitle><date>1999-12-01</date><risdate>1999</risdate><volume>52</volume><issue>3</issue><spage>267</spage><epage>271</epage><pages>267-271</pages><issn>0378-7796</issn><eissn>1873-2046</eissn><abstract>This paper describes a fuzzy logic-based control strategy for shifting the average power demand of residential electric water heaters. The proposed control strategy can shift the average power demand of residential electric water heaters from periods of high demand for electricity to off-peak periods. A minimum temperature for hot water, defined as customer comfort level, is used as a control variable. Water temperature is not allowed to fall below the minimum temperature set by the customer. Simulation results show that the proposed strategy can shift the average power demand of residential water heaters to improve the load factor of residential load profile.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0378-7796(99)00022-X</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7796
ispartof Electric power systems research, 1999-12, Vol.52 (3), p.267-271
issn 0378-7796
1873-2046
language eng
recordid cdi_proquest_miscellaneous_26905786
source ScienceDirect Freedom Collection 2022-2024
subjects Electric water heater
Fuzzy logic
Power demand
title Controlling the average residential electric water heater power demand using fuzzy logic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20average%20residential%20electric%20water%20heater%20power%20demand%20using%20fuzzy%20logic&rft.jtitle=Electric%20power%20systems%20research&rft.au=LaMeres,%20B.J&rft.date=1999-12-01&rft.volume=52&rft.issue=3&rft.spage=267&rft.epage=271&rft.pages=267-271&rft.issn=0378-7796&rft.eissn=1873-2046&rft_id=info:doi/10.1016/S0378-7796(99)00022-X&rft_dat=%3Cproquest_cross%3E26905786%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-63440e1f5d9e29f138655b6381dd0179fe891d6b0f20855e72c13ac763f91ab23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26905786&rft_id=info:pmid/&rfr_iscdi=true