Loading…
Cancellation of reference update-induced 1/f noise in a chirped-pulse DAS
Distributed acoustic sensors (DAS) perform distributed and dynamic strain or temperature change measurements by comparing a measured time-domain trace with a previous fiber reference state. Large strain or temperature fluctuations or laser frequency noise impose the need to update such a reference,...
Saved in:
Published in: | Optics letters 2022-07, Vol.47 (14), p.3588-3591 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Distributed acoustic sensors (DAS) perform distributed and dynamic strain or temperature change measurements by comparing a measured time-domain trace with a previous fiber reference state. Large strain or temperature fluctuations or laser frequency noise impose the need to update such a reference, making it necessary to integrate the short-term variation measurements if absolute strain or temperature variations are to be obtained. This has the drawback of introducing a 1/f noise component, as noise is integrated with each cumulative variation measurement, which is detrimental to the determination of very slow processes (i.e., in the mHz frequency range or below). This work analyzes the long-term stability of chirped-pulse phase-sensitive optical time-domain reflectometry (CP-ΦOTDR) with multi-frequency database demodulation (MFDD) to carry out “calibrated” measurements in a DAS along an unmodified SMF. It is shown that, under the conditions studied in this work, a “calibrated” chirped-pulse DAS (CP-DAS) with a completely suppressed reference update-induced 1/f noise component is achieved capable of making measurements over periods of more than 2 months with the same set of references, even when switching off the interrogator during the measurement. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.465367 |