Loading…

Cancellation of reference update-induced 1/f noise in a chirped-pulse DAS

Distributed acoustic sensors (DAS) perform distributed and dynamic strain or temperature change measurements by comparing a measured time-domain trace with a previous fiber reference state. Large strain or temperature fluctuations or laser frequency noise impose the need to update such a reference,...

Full description

Saved in:
Bibliographic Details
Published in:Optics letters 2022-07, Vol.47 (14), p.3588-3591
Main Authors: Vidal-Moreno, Pedro J., Rochat, Etienne, Fermoso, Pablo, Fernández-Ruiz, María R., Martins, Hugo, Martin-Lopez, Sonia, Ocaña, Manuel, Gonzalez-Herraez, Miguel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Distributed acoustic sensors (DAS) perform distributed and dynamic strain or temperature change measurements by comparing a measured time-domain trace with a previous fiber reference state. Large strain or temperature fluctuations or laser frequency noise impose the need to update such a reference, making it necessary to integrate the short-term variation measurements if absolute strain or temperature variations are to be obtained. This has the drawback of introducing a 1/f noise component, as noise is integrated with each cumulative variation measurement, which is detrimental to the determination of very slow processes (i.e., in the mHz frequency range or below). This work analyzes the long-term stability of chirped-pulse phase-sensitive optical time-domain reflectometry (CP-ΦOTDR) with multi-frequency database demodulation (MFDD) to carry out “calibrated” measurements in a DAS along an unmodified SMF. It is shown that, under the conditions studied in this work, a “calibrated” chirped-pulse DAS (CP-DAS) with a completely suppressed reference update-induced 1/f noise component is achieved capable of making measurements over periods of more than 2 months with the same set of references, even when switching off the interrogator during the measurement.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.465367