Loading…
Design and characterization of multilayer spiral transmission-line baluns
We discuss the design of coupled spiral transmission-line baluns modeled after the Marchand type. The balun structure consists of a pair of coupled spiral conductors vertically offset across intervening polyimide layers. The baluns are fabricated on various substrates (glass and high- and low-resist...
Saved in:
Published in: | IEEE transactions on microwave theory and techniques 1999-09, Vol.47 (9), p.1841-1847 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We discuss the design of coupled spiral transmission-line baluns modeled after the Marchand type. The balun structure consists of a pair of coupled spiral conductors vertically offset across intervening polyimide layers. The baluns are fabricated on various substrates (glass and high- and low-resistivity silicon). The characteristics such as return loss, insertion loss, and output signal imbalance are measured. The center frequencies of 3-dB bandwidths (BWs), primarily determined by their conductor lengths, range from 1.2 to 3.5 GHz. The 3-dB BW normalized by the center frequency is /spl sim/1.48 in all cases. We observe an optimum BW for better performance. Return losses at the center frequencies range from 13 to 18 dB. Amplitude imbalance distributes in the range of 0.3-1.0 dB, depending on the sizes of devices and substrates. The minimum insertion loss is 0.55 dB for the balun on a glass substrate with 100-/spl mu/m-wide conductors. The devices fabricated on glass and high resistivity (>4000 n cm) silicon show remarkably similar behaviors despite the large difference in dielectric constant. This technique is applicable to monolithic microwave integrated circuits. |
---|---|
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/22.788521 |