Loading…

Deposition of material at grain boundaries in tension interpreted in terms of diffusional creep

We propose that the deposition of material at grain boundaries in tension may be used as a critical test for diffusional creep. According to the contemporary understanding of grain boundary structures, material is deposited at grain boundaries by the climb of grain boundary dislocations (GBDs). In t...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 1999-06, Vol.265 (1), p.140-145
Main Authors: Thorsen, P.A., Bilde-Sørensen, J.B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-98bdaf8ee0c7b7b8ebc6aca9b054c857ae59e99c806ac62f110a3bdeb797cce03
cites cdi_FETCH-LOGICAL-c367t-98bdaf8ee0c7b7b8ebc6aca9b054c857ae59e99c806ac62f110a3bdeb797cce03
container_end_page 145
container_issue 1
container_start_page 140
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 265
creator Thorsen, P.A.
Bilde-Sørensen, J.B.
description We propose that the deposition of material at grain boundaries in tension may be used as a critical test for diffusional creep. According to the contemporary understanding of grain boundary structures, material is deposited at grain boundaries by the climb of grain boundary dislocations (GBDs). In the general case, climb and glide are coupled processes and since GBDs are associated with a step in the boundary, the movement of a grain boundary dislocation by climb and glide will result in concurrent grain boundary migration. We describe an experiment that unambiguously separates the components of deposition, grain boundary sliding and migration. The experiment has been applied to a sample of Cu–2wt.%Ni which was crept to an elongation of 2.4% under a stress of 1.14 MPa at 1073 and 1103 K. It was demonstrated that material had been deposited at some of the grain boundaries in tension during the creep deformation.
doi_str_mv 10.1016/S0921-5093(98)01139-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26918705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509398011393</els_id><sourcerecordid>26918705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-98bdaf8ee0c7b7b8ebc6aca9b054c857ae59e99c806ac62f110a3bdeb797cce03</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKEHET1Uk02bNCeR9RMWPKjnME2nEmnTmqSC_97WLnr0NMzwvDPJQ8gxoxeMMnH5TNWKpTlV_EwV55QxrlK-QxaskDzNFBe7ZPGL7JODEN4ppSyj-YLoG-y7YKPtXNLVSQsRvYUmgZi8ebAuKbvBVeAthmTsIrowodaNXO8xYjWPfRumfGXrepiIcYXxiP0h2auhCXi0rUvyenf7sn5IN0_3j-vrTWq4kDFVRVlBXSBSI0tZFlgaAQZUSfPMFLkEzBUqZQo6jsWqZowCLysspZLGIOVLcjrv7X33MWCIurXBYNOAw24IeiXUqIPmI5jPoPFdCB5r3Xvbgv_SjOpJp_7RqSdXWhX6R6fmY-5kewCCgab24IwNf2GZCSmmd1zNGI6f_bTodTAWncHKejRRV53959A3RFCL_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26918705</pqid></control><display><type>article</type><title>Deposition of material at grain boundaries in tension interpreted in terms of diffusional creep</title><source>ScienceDirect Freedom Collection</source><creator>Thorsen, P.A. ; Bilde-Sørensen, J.B.</creator><creatorcontrib>Thorsen, P.A. ; Bilde-Sørensen, J.B.</creatorcontrib><description>We propose that the deposition of material at grain boundaries in tension may be used as a critical test for diffusional creep. According to the contemporary understanding of grain boundary structures, material is deposited at grain boundaries by the climb of grain boundary dislocations (GBDs). In the general case, climb and glide are coupled processes and since GBDs are associated with a step in the boundary, the movement of a grain boundary dislocation by climb and glide will result in concurrent grain boundary migration. We describe an experiment that unambiguously separates the components of deposition, grain boundary sliding and migration. The experiment has been applied to a sample of Cu–2wt.%Ni which was crept to an elongation of 2.4% under a stress of 1.14 MPa at 1073 and 1103 K. It was demonstrated that material had been deposited at some of the grain boundaries in tension during the creep deformation.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/S0921-5093(98)01139-3</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Coincident site lattice ; Condensed matter: structure, mechanical and thermal properties ; Creep ; Cu–Ni alloy ; Diffusion in solids ; Diffusion of other defects ; Exact sciences and technology ; Grain boundary dislocations ; Grain boundary sliding ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Metals. Metallurgy ; Nabarro–Herring creep ; Physics ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 1999-06, Vol.265 (1), p.140-145</ispartof><rights>1999 Elsevier Science S.A.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-98bdaf8ee0c7b7b8ebc6aca9b054c857ae59e99c806ac62f110a3bdeb797cce03</citedby><cites>FETCH-LOGICAL-c367t-98bdaf8ee0c7b7b8ebc6aca9b054c857ae59e99c806ac62f110a3bdeb797cce03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1746760$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Thorsen, P.A.</creatorcontrib><creatorcontrib>Bilde-Sørensen, J.B.</creatorcontrib><title>Deposition of material at grain boundaries in tension interpreted in terms of diffusional creep</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>We propose that the deposition of material at grain boundaries in tension may be used as a critical test for diffusional creep. According to the contemporary understanding of grain boundary structures, material is deposited at grain boundaries by the climb of grain boundary dislocations (GBDs). In the general case, climb and glide are coupled processes and since GBDs are associated with a step in the boundary, the movement of a grain boundary dislocation by climb and glide will result in concurrent grain boundary migration. We describe an experiment that unambiguously separates the components of deposition, grain boundary sliding and migration. The experiment has been applied to a sample of Cu–2wt.%Ni which was crept to an elongation of 2.4% under a stress of 1.14 MPa at 1073 and 1103 K. It was demonstrated that material had been deposited at some of the grain boundaries in tension during the creep deformation.</description><subject>Applied sciences</subject><subject>Coincident site lattice</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Creep</subject><subject>Cu–Ni alloy</subject><subject>Diffusion in solids</subject><subject>Diffusion of other defects</subject><subject>Exact sciences and technology</subject><subject>Grain boundary dislocations</subject><subject>Grain boundary sliding</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Metals. Metallurgy</subject><subject>Nabarro–Herring creep</subject><subject>Physics</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BKEHET1Uk02bNCeR9RMWPKjnME2nEmnTmqSC_97WLnr0NMzwvDPJQ8gxoxeMMnH5TNWKpTlV_EwV55QxrlK-QxaskDzNFBe7ZPGL7JODEN4ppSyj-YLoG-y7YKPtXNLVSQsRvYUmgZi8ebAuKbvBVeAthmTsIrowodaNXO8xYjWPfRumfGXrepiIcYXxiP0h2auhCXi0rUvyenf7sn5IN0_3j-vrTWq4kDFVRVlBXSBSI0tZFlgaAQZUSfPMFLkEzBUqZQo6jsWqZowCLysspZLGIOVLcjrv7X33MWCIurXBYNOAw24IeiXUqIPmI5jPoPFdCB5r3Xvbgv_SjOpJp_7RqSdXWhX6R6fmY-5kewCCgab24IwNf2GZCSmmd1zNGI6f_bTodTAWncHKejRRV53959A3RFCL_w</recordid><startdate>19990615</startdate><enddate>19990615</enddate><creator>Thorsen, P.A.</creator><creator>Bilde-Sørensen, J.B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>19990615</creationdate><title>Deposition of material at grain boundaries in tension interpreted in terms of diffusional creep</title><author>Thorsen, P.A. ; Bilde-Sørensen, J.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-98bdaf8ee0c7b7b8ebc6aca9b054c857ae59e99c806ac62f110a3bdeb797cce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Coincident site lattice</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Creep</topic><topic>Cu–Ni alloy</topic><topic>Diffusion in solids</topic><topic>Diffusion of other defects</topic><topic>Exact sciences and technology</topic><topic>Grain boundary dislocations</topic><topic>Grain boundary sliding</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Metals. Metallurgy</topic><topic>Nabarro–Herring creep</topic><topic>Physics</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thorsen, P.A.</creatorcontrib><creatorcontrib>Bilde-Sørensen, J.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thorsen, P.A.</au><au>Bilde-Sørensen, J.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deposition of material at grain boundaries in tension interpreted in terms of diffusional creep</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>1999-06-15</date><risdate>1999</risdate><volume>265</volume><issue>1</issue><spage>140</spage><epage>145</epage><pages>140-145</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>We propose that the deposition of material at grain boundaries in tension may be used as a critical test for diffusional creep. According to the contemporary understanding of grain boundary structures, material is deposited at grain boundaries by the climb of grain boundary dislocations (GBDs). In the general case, climb and glide are coupled processes and since GBDs are associated with a step in the boundary, the movement of a grain boundary dislocation by climb and glide will result in concurrent grain boundary migration. We describe an experiment that unambiguously separates the components of deposition, grain boundary sliding and migration. The experiment has been applied to a sample of Cu–2wt.%Ni which was crept to an elongation of 2.4% under a stress of 1.14 MPa at 1073 and 1103 K. It was demonstrated that material had been deposited at some of the grain boundaries in tension during the creep deformation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0921-5093(98)01139-3</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 1999-06, Vol.265 (1), p.140-145
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_26918705
source ScienceDirect Freedom Collection
subjects Applied sciences
Coincident site lattice
Condensed matter: structure, mechanical and thermal properties
Creep
Cu–Ni alloy
Diffusion in solids
Diffusion of other defects
Exact sciences and technology
Grain boundary dislocations
Grain boundary sliding
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Metals. Metallurgy
Nabarro–Herring creep
Physics
Transport properties of condensed matter (nonelectronic)
title Deposition of material at grain boundaries in tension interpreted in terms of diffusional creep
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deposition%20of%20material%20at%20grain%20boundaries%20in%20tension%20interpreted%20in%20terms%20of%20diffusional%20creep&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Thorsen,%20P.A.&rft.date=1999-06-15&rft.volume=265&rft.issue=1&rft.spage=140&rft.epage=145&rft.pages=140-145&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/S0921-5093(98)01139-3&rft_dat=%3Cproquest_cross%3E26918705%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-98bdaf8ee0c7b7b8ebc6aca9b054c857ae59e99c806ac62f110a3bdeb797cce03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26918705&rft_id=info:pmid/&rfr_iscdi=true