Loading…
On-Chip Integrated Atomically Thin 2D Material Heater as a Training Accelerator for an Electrochemical Random-Access Memory Synapse for Neuromorphic Computing Application
An artificial synapse based on oxygen-ion-driven electrochemical random-access memory (O-ECRAM) devices is a promising candidate for building neural networks embodied in neuromorphic hardware. However, achieving commercial-level learning accuracy in O-ECRAM synapses, analog conductance tuning at fas...
Saved in:
Published in: | ACS nano 2022-08, Vol.16 (8), p.12214-12225 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a333t-1debd0a592d4e7a8d3612ba726edcb41a7ec5e0be462fed2724e12f138280b053 |
---|---|
cites | cdi_FETCH-LOGICAL-a333t-1debd0a592d4e7a8d3612ba726edcb41a7ec5e0be462fed2724e12f138280b053 |
container_end_page | 12225 |
container_issue | 8 |
container_start_page | 12214 |
container_title | ACS nano |
container_volume | 16 |
creator | Nikam, Revannath Dnyandeo Lee, Jongwon Choi, Wooseok Kim, Dongmin Hwang, Hyunsang |
description | An artificial synapse based on oxygen-ion-driven electrochemical random-access memory (O-ECRAM) devices is a promising candidate for building neural networks embodied in neuromorphic hardware. However, achieving commercial-level learning accuracy in O-ECRAM synapses, analog conductance tuning at fast speed, and multibit storage capacity is challenging because of the lack of Joule heating, which restricts O2– ionic transport. Here, we propose the use of an atomically thin heater of monolayer graphene as a low-power heating source for O-ECRAM to increase thermally activated O2– migration within channel-electrolyte layers. Heating from graphene manipulates the electrolyte activation energy to establish and maintain discrete analog states in the O-ECRAM channel. Benefiting from the integrated graphene heater, the O-ECRAM features long retention (>104 s), good stability (switching accuracy 103 training pulses), multilevel analog states for 6-bit analog weight storage with near-ideal linear switching, and 95% pattern-identification accuracy. The findings demonstrate the usefulness of 2D materials as integrated heating elements in artificial synapse chips to accelerate neuromorphic computation. |
doi_str_mv | 10.1021/acsnano.2c02913 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2692071712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2692071712</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-1debd0a592d4e7a8d3612ba726edcb41a7ec5e0be462fed2724e12f138280b053</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhi1EBRQ4c6t8RKoC9njzscfVlhYkKFLZSr1FE3vCGiV2aieH_Uv9lfV-lFsPlkf28z7S6GXsSoobKUDeoo4Onb8BLWAu1RE7k3NVZKIqfh2_z7k8ZR9jfBMiL6uyOGGnKq9yBSDO2J9nly3XduAPbqTXgCMZvhh9bzV23Yav1tZx-MKf0kew2PF72k4cI0e-Cmidda98oTV1lMI-8DYddPyuIz0Gr9e0U_Ef6Izvsy0ZI3-i3ocNf9k4HCLtMt9pCj69Dmur-dL3wzTu1MPQJcFovbtgH1rsIl0e7nP28-vdanmfPT5_e1guHjNUSo2ZNNQYgfkczIxKrIwqJDRYQkFGNzOJJemcREOzAloyUMKMJLRSVVCJRuTqnF3vvUPwvyeKY93bmBbs0JGfYg3FHEQpSwkJvd2jOvgYA7X1EGyPYVNLUW8Lqg8F1YeCUuLTQT41PZl3_l8jCfi8B1KyfvNTcGnX_-r-AlVLnx8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692071712</pqid></control><display><type>article</type><title>On-Chip Integrated Atomically Thin 2D Material Heater as a Training Accelerator for an Electrochemical Random-Access Memory Synapse for Neuromorphic Computing Application</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Nikam, Revannath Dnyandeo ; Lee, Jongwon ; Choi, Wooseok ; Kim, Dongmin ; Hwang, Hyunsang</creator><creatorcontrib>Nikam, Revannath Dnyandeo ; Lee, Jongwon ; Choi, Wooseok ; Kim, Dongmin ; Hwang, Hyunsang</creatorcontrib><description>An artificial synapse based on oxygen-ion-driven electrochemical random-access memory (O-ECRAM) devices is a promising candidate for building neural networks embodied in neuromorphic hardware. However, achieving commercial-level learning accuracy in O-ECRAM synapses, analog conductance tuning at fast speed, and multibit storage capacity is challenging because of the lack of Joule heating, which restricts O2– ionic transport. Here, we propose the use of an atomically thin heater of monolayer graphene as a low-power heating source for O-ECRAM to increase thermally activated O2– migration within channel-electrolyte layers. Heating from graphene manipulates the electrolyte activation energy to establish and maintain discrete analog states in the O-ECRAM channel. Benefiting from the integrated graphene heater, the O-ECRAM features long retention (>104 s), good stability (switching accuracy <98% for >103 training pulses), multilevel analog states for 6-bit analog weight storage with near-ideal linear switching, and 95% pattern-identification accuracy. The findings demonstrate the usefulness of 2D materials as integrated heating elements in artificial synapse chips to accelerate neuromorphic computation.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c02913</identifier><identifier>PMID: 35853220</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Graphite ; Neural Networks, Computer ; Synapses</subject><ispartof>ACS nano, 2022-08, Vol.16 (8), p.12214-12225</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-1debd0a592d4e7a8d3612ba726edcb41a7ec5e0be462fed2724e12f138280b053</citedby><cites>FETCH-LOGICAL-a333t-1debd0a592d4e7a8d3612ba726edcb41a7ec5e0be462fed2724e12f138280b053</cites><orcidid>0000-0002-6277-8411 ; 0000-0003-0836-5250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35853220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nikam, Revannath Dnyandeo</creatorcontrib><creatorcontrib>Lee, Jongwon</creatorcontrib><creatorcontrib>Choi, Wooseok</creatorcontrib><creatorcontrib>Kim, Dongmin</creatorcontrib><creatorcontrib>Hwang, Hyunsang</creatorcontrib><title>On-Chip Integrated Atomically Thin 2D Material Heater as a Training Accelerator for an Electrochemical Random-Access Memory Synapse for Neuromorphic Computing Application</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>An artificial synapse based on oxygen-ion-driven electrochemical random-access memory (O-ECRAM) devices is a promising candidate for building neural networks embodied in neuromorphic hardware. However, achieving commercial-level learning accuracy in O-ECRAM synapses, analog conductance tuning at fast speed, and multibit storage capacity is challenging because of the lack of Joule heating, which restricts O2– ionic transport. Here, we propose the use of an atomically thin heater of monolayer graphene as a low-power heating source for O-ECRAM to increase thermally activated O2– migration within channel-electrolyte layers. Heating from graphene manipulates the electrolyte activation energy to establish and maintain discrete analog states in the O-ECRAM channel. Benefiting from the integrated graphene heater, the O-ECRAM features long retention (>104 s), good stability (switching accuracy <98% for >103 training pulses), multilevel analog states for 6-bit analog weight storage with near-ideal linear switching, and 95% pattern-identification accuracy. The findings demonstrate the usefulness of 2D materials as integrated heating elements in artificial synapse chips to accelerate neuromorphic computation.</description><subject>Graphite</subject><subject>Neural Networks, Computer</subject><subject>Synapses</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kU1P3DAQhi1EBRQ4c6t8RKoC9njzscfVlhYkKFLZSr1FE3vCGiV2aieH_Uv9lfV-lFsPlkf28z7S6GXsSoobKUDeoo4Onb8BLWAu1RE7k3NVZKIqfh2_z7k8ZR9jfBMiL6uyOGGnKq9yBSDO2J9nly3XduAPbqTXgCMZvhh9bzV23Yav1tZx-MKf0kew2PF72k4cI0e-Cmidda98oTV1lMI-8DYddPyuIz0Gr9e0U_Ef6Izvsy0ZI3-i3ocNf9k4HCLtMt9pCj69Dmur-dL3wzTu1MPQJcFovbtgH1rsIl0e7nP28-vdanmfPT5_e1guHjNUSo2ZNNQYgfkczIxKrIwqJDRYQkFGNzOJJemcREOzAloyUMKMJLRSVVCJRuTqnF3vvUPwvyeKY93bmBbs0JGfYg3FHEQpSwkJvd2jOvgYA7X1EGyPYVNLUW8Lqg8F1YeCUuLTQT41PZl3_l8jCfi8B1KyfvNTcGnX_-r-AlVLnx8</recordid><startdate>20220823</startdate><enddate>20220823</enddate><creator>Nikam, Revannath Dnyandeo</creator><creator>Lee, Jongwon</creator><creator>Choi, Wooseok</creator><creator>Kim, Dongmin</creator><creator>Hwang, Hyunsang</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6277-8411</orcidid><orcidid>https://orcid.org/0000-0003-0836-5250</orcidid></search><sort><creationdate>20220823</creationdate><title>On-Chip Integrated Atomically Thin 2D Material Heater as a Training Accelerator for an Electrochemical Random-Access Memory Synapse for Neuromorphic Computing Application</title><author>Nikam, Revannath Dnyandeo ; Lee, Jongwon ; Choi, Wooseok ; Kim, Dongmin ; Hwang, Hyunsang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-1debd0a592d4e7a8d3612ba726edcb41a7ec5e0be462fed2724e12f138280b053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Graphite</topic><topic>Neural Networks, Computer</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikam, Revannath Dnyandeo</creatorcontrib><creatorcontrib>Lee, Jongwon</creatorcontrib><creatorcontrib>Choi, Wooseok</creatorcontrib><creatorcontrib>Kim, Dongmin</creatorcontrib><creatorcontrib>Hwang, Hyunsang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikam, Revannath Dnyandeo</au><au>Lee, Jongwon</au><au>Choi, Wooseok</au><au>Kim, Dongmin</au><au>Hwang, Hyunsang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-Chip Integrated Atomically Thin 2D Material Heater as a Training Accelerator for an Electrochemical Random-Access Memory Synapse for Neuromorphic Computing Application</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-08-23</date><risdate>2022</risdate><volume>16</volume><issue>8</issue><spage>12214</spage><epage>12225</epage><pages>12214-12225</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>An artificial synapse based on oxygen-ion-driven electrochemical random-access memory (O-ECRAM) devices is a promising candidate for building neural networks embodied in neuromorphic hardware. However, achieving commercial-level learning accuracy in O-ECRAM synapses, analog conductance tuning at fast speed, and multibit storage capacity is challenging because of the lack of Joule heating, which restricts O2– ionic transport. Here, we propose the use of an atomically thin heater of monolayer graphene as a low-power heating source for O-ECRAM to increase thermally activated O2– migration within channel-electrolyte layers. Heating from graphene manipulates the electrolyte activation energy to establish and maintain discrete analog states in the O-ECRAM channel. Benefiting from the integrated graphene heater, the O-ECRAM features long retention (>104 s), good stability (switching accuracy <98% for >103 training pulses), multilevel analog states for 6-bit analog weight storage with near-ideal linear switching, and 95% pattern-identification accuracy. The findings demonstrate the usefulness of 2D materials as integrated heating elements in artificial synapse chips to accelerate neuromorphic computation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35853220</pmid><doi>10.1021/acsnano.2c02913</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6277-8411</orcidid><orcidid>https://orcid.org/0000-0003-0836-5250</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2022-08, Vol.16 (8), p.12214-12225 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2692071712 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Graphite Neural Networks, Computer Synapses |
title | On-Chip Integrated Atomically Thin 2D Material Heater as a Training Accelerator for an Electrochemical Random-Access Memory Synapse for Neuromorphic Computing Application |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-Chip%20Integrated%20Atomically%20Thin%202D%20Material%20Heater%20as%20a%20Training%20Accelerator%20for%20an%20Electrochemical%20Random-Access%20Memory%20Synapse%20for%20Neuromorphic%20Computing%20Application&rft.jtitle=ACS%20nano&rft.au=Nikam,%20Revannath%20Dnyandeo&rft.date=2022-08-23&rft.volume=16&rft.issue=8&rft.spage=12214&rft.epage=12225&rft.pages=12214-12225&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c02913&rft_dat=%3Cproquest_cross%3E2692071712%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a333t-1debd0a592d4e7a8d3612ba726edcb41a7ec5e0be462fed2724e12f138280b053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2692071712&rft_id=info:pmid/35853220&rfr_iscdi=true |