Loading…

On-Chip Integrated Atomically Thin 2D Material Heater as a Training Accelerator for an Electrochemical Random-Access Memory Synapse for Neuromorphic Computing Application

An artificial synapse based on oxygen-ion-driven electrochemical random-access memory (O-ECRAM) devices is a promising candidate for building neural networks embodied in neuromorphic hardware. However, achieving commercial-level learning accuracy in O-ECRAM synapses, analog conductance tuning at fas...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2022-08, Vol.16 (8), p.12214-12225
Main Authors: Nikam, Revannath Dnyandeo, Lee, Jongwon, Choi, Wooseok, Kim, Dongmin, Hwang, Hyunsang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a333t-1debd0a592d4e7a8d3612ba726edcb41a7ec5e0be462fed2724e12f138280b053
cites cdi_FETCH-LOGICAL-a333t-1debd0a592d4e7a8d3612ba726edcb41a7ec5e0be462fed2724e12f138280b053
container_end_page 12225
container_issue 8
container_start_page 12214
container_title ACS nano
container_volume 16
creator Nikam, Revannath Dnyandeo
Lee, Jongwon
Choi, Wooseok
Kim, Dongmin
Hwang, Hyunsang
description An artificial synapse based on oxygen-ion-driven electrochemical random-access memory (O-ECRAM) devices is a promising candidate for building neural networks embodied in neuromorphic hardware. However, achieving commercial-level learning accuracy in O-ECRAM synapses, analog conductance tuning at fast speed, and multibit storage capacity is challenging because of the lack of Joule heating, which restricts O2– ionic transport. Here, we propose the use of an atomically thin heater of monolayer graphene as a low-power heating source for O-ECRAM to increase thermally activated O2– migration within channel-electrolyte layers. Heating from graphene manipulates the electrolyte activation energy to establish and maintain discrete analog states in the O-ECRAM channel. Benefiting from the integrated graphene heater, the O-ECRAM features long retention (>104 s), good stability (switching accuracy 103 training pulses), multilevel analog states for 6-bit analog weight storage with near-ideal linear switching, and 95% pattern-identification accuracy. The findings demonstrate the usefulness of 2D materials as integrated heating elements in artificial synapse chips to accelerate neuromorphic computation.
doi_str_mv 10.1021/acsnano.2c02913
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2692071712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2692071712</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-1debd0a592d4e7a8d3612ba726edcb41a7ec5e0be462fed2724e12f138280b053</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhi1EBRQ4c6t8RKoC9njzscfVlhYkKFLZSr1FE3vCGiV2aieH_Uv9lfV-lFsPlkf28z7S6GXsSoobKUDeoo4Onb8BLWAu1RE7k3NVZKIqfh2_z7k8ZR9jfBMiL6uyOGGnKq9yBSDO2J9nly3XduAPbqTXgCMZvhh9bzV23Yav1tZx-MKf0kew2PF72k4cI0e-Cmidda98oTV1lMI-8DYddPyuIz0Gr9e0U_Ef6Izvsy0ZI3-i3ocNf9k4HCLtMt9pCj69Dmur-dL3wzTu1MPQJcFovbtgH1rsIl0e7nP28-vdanmfPT5_e1guHjNUSo2ZNNQYgfkczIxKrIwqJDRYQkFGNzOJJemcREOzAloyUMKMJLRSVVCJRuTqnF3vvUPwvyeKY93bmBbs0JGfYg3FHEQpSwkJvd2jOvgYA7X1EGyPYVNLUW8Lqg8F1YeCUuLTQT41PZl3_l8jCfi8B1KyfvNTcGnX_-r-AlVLnx8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692071712</pqid></control><display><type>article</type><title>On-Chip Integrated Atomically Thin 2D Material Heater as a Training Accelerator for an Electrochemical Random-Access Memory Synapse for Neuromorphic Computing Application</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Nikam, Revannath Dnyandeo ; Lee, Jongwon ; Choi, Wooseok ; Kim, Dongmin ; Hwang, Hyunsang</creator><creatorcontrib>Nikam, Revannath Dnyandeo ; Lee, Jongwon ; Choi, Wooseok ; Kim, Dongmin ; Hwang, Hyunsang</creatorcontrib><description>An artificial synapse based on oxygen-ion-driven electrochemical random-access memory (O-ECRAM) devices is a promising candidate for building neural networks embodied in neuromorphic hardware. However, achieving commercial-level learning accuracy in O-ECRAM synapses, analog conductance tuning at fast speed, and multibit storage capacity is challenging because of the lack of Joule heating, which restricts O2– ionic transport. Here, we propose the use of an atomically thin heater of monolayer graphene as a low-power heating source for O-ECRAM to increase thermally activated O2– migration within channel-electrolyte layers. Heating from graphene manipulates the electrolyte activation energy to establish and maintain discrete analog states in the O-ECRAM channel. Benefiting from the integrated graphene heater, the O-ECRAM features long retention (&gt;104 s), good stability (switching accuracy &lt;98% for &gt;103 training pulses), multilevel analog states for 6-bit analog weight storage with near-ideal linear switching, and 95% pattern-identification accuracy. The findings demonstrate the usefulness of 2D materials as integrated heating elements in artificial synapse chips to accelerate neuromorphic computation.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c02913</identifier><identifier>PMID: 35853220</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Graphite ; Neural Networks, Computer ; Synapses</subject><ispartof>ACS nano, 2022-08, Vol.16 (8), p.12214-12225</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-1debd0a592d4e7a8d3612ba726edcb41a7ec5e0be462fed2724e12f138280b053</citedby><cites>FETCH-LOGICAL-a333t-1debd0a592d4e7a8d3612ba726edcb41a7ec5e0be462fed2724e12f138280b053</cites><orcidid>0000-0002-6277-8411 ; 0000-0003-0836-5250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35853220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nikam, Revannath Dnyandeo</creatorcontrib><creatorcontrib>Lee, Jongwon</creatorcontrib><creatorcontrib>Choi, Wooseok</creatorcontrib><creatorcontrib>Kim, Dongmin</creatorcontrib><creatorcontrib>Hwang, Hyunsang</creatorcontrib><title>On-Chip Integrated Atomically Thin 2D Material Heater as a Training Accelerator for an Electrochemical Random-Access Memory Synapse for Neuromorphic Computing Application</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>An artificial synapse based on oxygen-ion-driven electrochemical random-access memory (O-ECRAM) devices is a promising candidate for building neural networks embodied in neuromorphic hardware. However, achieving commercial-level learning accuracy in O-ECRAM synapses, analog conductance tuning at fast speed, and multibit storage capacity is challenging because of the lack of Joule heating, which restricts O2– ionic transport. Here, we propose the use of an atomically thin heater of monolayer graphene as a low-power heating source for O-ECRAM to increase thermally activated O2– migration within channel-electrolyte layers. Heating from graphene manipulates the electrolyte activation energy to establish and maintain discrete analog states in the O-ECRAM channel. Benefiting from the integrated graphene heater, the O-ECRAM features long retention (&gt;104 s), good stability (switching accuracy &lt;98% for &gt;103 training pulses), multilevel analog states for 6-bit analog weight storage with near-ideal linear switching, and 95% pattern-identification accuracy. The findings demonstrate the usefulness of 2D materials as integrated heating elements in artificial synapse chips to accelerate neuromorphic computation.</description><subject>Graphite</subject><subject>Neural Networks, Computer</subject><subject>Synapses</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kU1P3DAQhi1EBRQ4c6t8RKoC9njzscfVlhYkKFLZSr1FE3vCGiV2aieH_Uv9lfV-lFsPlkf28z7S6GXsSoobKUDeoo4Onb8BLWAu1RE7k3NVZKIqfh2_z7k8ZR9jfBMiL6uyOGGnKq9yBSDO2J9nly3XduAPbqTXgCMZvhh9bzV23Yav1tZx-MKf0kew2PF72k4cI0e-Cmidda98oTV1lMI-8DYddPyuIz0Gr9e0U_Ef6Izvsy0ZI3-i3ocNf9k4HCLtMt9pCj69Dmur-dL3wzTu1MPQJcFovbtgH1rsIl0e7nP28-vdanmfPT5_e1guHjNUSo2ZNNQYgfkczIxKrIwqJDRYQkFGNzOJJemcREOzAloyUMKMJLRSVVCJRuTqnF3vvUPwvyeKY93bmBbs0JGfYg3FHEQpSwkJvd2jOvgYA7X1EGyPYVNLUW8Lqg8F1YeCUuLTQT41PZl3_l8jCfi8B1KyfvNTcGnX_-r-AlVLnx8</recordid><startdate>20220823</startdate><enddate>20220823</enddate><creator>Nikam, Revannath Dnyandeo</creator><creator>Lee, Jongwon</creator><creator>Choi, Wooseok</creator><creator>Kim, Dongmin</creator><creator>Hwang, Hyunsang</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6277-8411</orcidid><orcidid>https://orcid.org/0000-0003-0836-5250</orcidid></search><sort><creationdate>20220823</creationdate><title>On-Chip Integrated Atomically Thin 2D Material Heater as a Training Accelerator for an Electrochemical Random-Access Memory Synapse for Neuromorphic Computing Application</title><author>Nikam, Revannath Dnyandeo ; Lee, Jongwon ; Choi, Wooseok ; Kim, Dongmin ; Hwang, Hyunsang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-1debd0a592d4e7a8d3612ba726edcb41a7ec5e0be462fed2724e12f138280b053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Graphite</topic><topic>Neural Networks, Computer</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikam, Revannath Dnyandeo</creatorcontrib><creatorcontrib>Lee, Jongwon</creatorcontrib><creatorcontrib>Choi, Wooseok</creatorcontrib><creatorcontrib>Kim, Dongmin</creatorcontrib><creatorcontrib>Hwang, Hyunsang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikam, Revannath Dnyandeo</au><au>Lee, Jongwon</au><au>Choi, Wooseok</au><au>Kim, Dongmin</au><au>Hwang, Hyunsang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-Chip Integrated Atomically Thin 2D Material Heater as a Training Accelerator for an Electrochemical Random-Access Memory Synapse for Neuromorphic Computing Application</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-08-23</date><risdate>2022</risdate><volume>16</volume><issue>8</issue><spage>12214</spage><epage>12225</epage><pages>12214-12225</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>An artificial synapse based on oxygen-ion-driven electrochemical random-access memory (O-ECRAM) devices is a promising candidate for building neural networks embodied in neuromorphic hardware. However, achieving commercial-level learning accuracy in O-ECRAM synapses, analog conductance tuning at fast speed, and multibit storage capacity is challenging because of the lack of Joule heating, which restricts O2– ionic transport. Here, we propose the use of an atomically thin heater of monolayer graphene as a low-power heating source for O-ECRAM to increase thermally activated O2– migration within channel-electrolyte layers. Heating from graphene manipulates the electrolyte activation energy to establish and maintain discrete analog states in the O-ECRAM channel. Benefiting from the integrated graphene heater, the O-ECRAM features long retention (&gt;104 s), good stability (switching accuracy &lt;98% for &gt;103 training pulses), multilevel analog states for 6-bit analog weight storage with near-ideal linear switching, and 95% pattern-identification accuracy. The findings demonstrate the usefulness of 2D materials as integrated heating elements in artificial synapse chips to accelerate neuromorphic computation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35853220</pmid><doi>10.1021/acsnano.2c02913</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6277-8411</orcidid><orcidid>https://orcid.org/0000-0003-0836-5250</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2022-08, Vol.16 (8), p.12214-12225
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2692071712
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Graphite
Neural Networks, Computer
Synapses
title On-Chip Integrated Atomically Thin 2D Material Heater as a Training Accelerator for an Electrochemical Random-Access Memory Synapse for Neuromorphic Computing Application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-Chip%20Integrated%20Atomically%20Thin%202D%20Material%20Heater%20as%20a%20Training%20Accelerator%20for%20an%20Electrochemical%20Random-Access%20Memory%20Synapse%20for%20Neuromorphic%20Computing%20Application&rft.jtitle=ACS%20nano&rft.au=Nikam,%20Revannath%20Dnyandeo&rft.date=2022-08-23&rft.volume=16&rft.issue=8&rft.spage=12214&rft.epage=12225&rft.pages=12214-12225&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c02913&rft_dat=%3Cproquest_cross%3E2692071712%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a333t-1debd0a592d4e7a8d3612ba726edcb41a7ec5e0be462fed2724e12f138280b053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2692071712&rft_id=info:pmid/35853220&rfr_iscdi=true