Loading…

A real multi-parent tri-hybrid evolutionary optimization method and its application in wind velocity estimation from wind profiler data

A real-coded multi-parent tri-hybrid evolutionary algorithm (EA) for problem optimization is presented. The hybrid EA algorithm combines the features of Simplex, stochastic relaxation (SR) and multi-parent EA reproduction in a model that encourages competition among the best individual solutions fro...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing 2001-12, Vol.1 (3), p.225-235
Main Authors: Mendoza, Noel E, Chen, Yen-Wei, Nakao, Zensho, Adachi, Tatsuhiro, Masuda, Yoshihisa
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c197t-678bc9d4457664bc931c54c357277348c63cf2b9b3e051ee720aea687a9200353
cites cdi_FETCH-LOGICAL-c197t-678bc9d4457664bc931c54c357277348c63cf2b9b3e051ee720aea687a9200353
container_end_page 235
container_issue 3
container_start_page 225
container_title Applied soft computing
container_volume 1
creator Mendoza, Noel E
Chen, Yen-Wei
Nakao, Zensho
Adachi, Tatsuhiro
Masuda, Yoshihisa
description A real-coded multi-parent tri-hybrid evolutionary algorithm (EA) for problem optimization is presented. The hybrid EA algorithm combines the features of Simplex, stochastic relaxation (SR) and multi-parent EA reproduction in a model that encourages competition among the best individual solutions from various operations. Its strength has been evaluated using standard test functions and shown to do better than other methods. The algorithm's ability to handle noise is evident when applied to experiments involving resolution of overlapping wind profiler (WP) data. Results obtained using raw data closely matched those obtained with data preprocessed by a low-pass FFT filter. Resolution of low- speed wind and clutter signals in various degrees of overlap is made possible, thereby allowing the determination of wind velocity and variance to be executed with ease.
doi_str_mv 10.1016/S1568-4946(01)00021-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26924298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26924298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c197t-678bc9d4457664bc931c54c357277348c63cf2b9b3e051ee720aea687a9200353</originalsourceid><addsrcrecordid>eNo9kMtOxCAUhllo4nh5BBNWRhdVboV2OZl4SyZxoa4JQ2kGQ0sFOqa-gK8tMzWuOJz_P7cPgEuMbjHC_O4Vl7wqWM34NcI3CCGCC3EEFv_pE3Aa4wfK3ppUC_CzhMEoB7vRJVsMKpg-wRRssZ02wTbQ7Lwbk_W9ChP0Q7Kd_Vb7P-xM2voGqr6BNkWohsFZPUu2h18253fGeW3TBE3MhbPWBt_N6hB8a50JsFFJnYPjVrloLv7eM_D-cP-2eirWL4_Pq-W60LgWqeCi2ui6YawUnLMcUqxLpmkpiBCUVZpT3ZJNvaEGldgYQZAyildC1QQhWtIzcDX3zdM_x7yX7GzUxjnVGz9GSTIWRuoqG8vZqIOPMZhWDiHfECaJkdyjlgfUcs9UIiwPqKWgv1xwds4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26924298</pqid></control><display><type>article</type><title>A real multi-parent tri-hybrid evolutionary optimization method and its application in wind velocity estimation from wind profiler data</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Mendoza, Noel E ; Chen, Yen-Wei ; Nakao, Zensho ; Adachi, Tatsuhiro ; Masuda, Yoshihisa</creator><creatorcontrib>Mendoza, Noel E ; Chen, Yen-Wei ; Nakao, Zensho ; Adachi, Tatsuhiro ; Masuda, Yoshihisa</creatorcontrib><description>A real-coded multi-parent tri-hybrid evolutionary algorithm (EA) for problem optimization is presented. The hybrid EA algorithm combines the features of Simplex, stochastic relaxation (SR) and multi-parent EA reproduction in a model that encourages competition among the best individual solutions from various operations. Its strength has been evaluated using standard test functions and shown to do better than other methods. The algorithm's ability to handle noise is evident when applied to experiments involving resolution of overlapping wind profiler (WP) data. Results obtained using raw data closely matched those obtained with data preprocessed by a low-pass FFT filter. Resolution of low- speed wind and clutter signals in various degrees of overlap is made possible, thereby allowing the determination of wind velocity and variance to be executed with ease.</description><identifier>ISSN: 1568-4946</identifier><identifier>DOI: 10.1016/S1568-4946(01)00021-7</identifier><language>eng</language><ispartof>Applied soft computing, 2001-12, Vol.1 (3), p.225-235</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c197t-678bc9d4457664bc931c54c357277348c63cf2b9b3e051ee720aea687a9200353</citedby><cites>FETCH-LOGICAL-c197t-678bc9d4457664bc931c54c357277348c63cf2b9b3e051ee720aea687a9200353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mendoza, Noel E</creatorcontrib><creatorcontrib>Chen, Yen-Wei</creatorcontrib><creatorcontrib>Nakao, Zensho</creatorcontrib><creatorcontrib>Adachi, Tatsuhiro</creatorcontrib><creatorcontrib>Masuda, Yoshihisa</creatorcontrib><title>A real multi-parent tri-hybrid evolutionary optimization method and its application in wind velocity estimation from wind profiler data</title><title>Applied soft computing</title><description>A real-coded multi-parent tri-hybrid evolutionary algorithm (EA) for problem optimization is presented. The hybrid EA algorithm combines the features of Simplex, stochastic relaxation (SR) and multi-parent EA reproduction in a model that encourages competition among the best individual solutions from various operations. Its strength has been evaluated using standard test functions and shown to do better than other methods. The algorithm's ability to handle noise is evident when applied to experiments involving resolution of overlapping wind profiler (WP) data. Results obtained using raw data closely matched those obtained with data preprocessed by a low-pass FFT filter. Resolution of low- speed wind and clutter signals in various degrees of overlap is made possible, thereby allowing the determination of wind velocity and variance to be executed with ease.</description><issn>1568-4946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOxCAUhllo4nh5BBNWRhdVboV2OZl4SyZxoa4JQ2kGQ0sFOqa-gK8tMzWuOJz_P7cPgEuMbjHC_O4Vl7wqWM34NcI3CCGCC3EEFv_pE3Aa4wfK3ppUC_CzhMEoB7vRJVsMKpg-wRRssZ02wTbQ7Lwbk_W9ChP0Q7Kd_Vb7P-xM2voGqr6BNkWohsFZPUu2h18253fGeW3TBE3MhbPWBt_N6hB8a50JsFFJnYPjVrloLv7eM_D-cP-2eirWL4_Pq-W60LgWqeCi2ui6YawUnLMcUqxLpmkpiBCUVZpT3ZJNvaEGldgYQZAyildC1QQhWtIzcDX3zdM_x7yX7GzUxjnVGz9GSTIWRuoqG8vZqIOPMZhWDiHfECaJkdyjlgfUcs9UIiwPqKWgv1xwds4</recordid><startdate>20011201</startdate><enddate>20011201</enddate><creator>Mendoza, Noel E</creator><creator>Chen, Yen-Wei</creator><creator>Nakao, Zensho</creator><creator>Adachi, Tatsuhiro</creator><creator>Masuda, Yoshihisa</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20011201</creationdate><title>A real multi-parent tri-hybrid evolutionary optimization method and its application in wind velocity estimation from wind profiler data</title><author>Mendoza, Noel E ; Chen, Yen-Wei ; Nakao, Zensho ; Adachi, Tatsuhiro ; Masuda, Yoshihisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c197t-678bc9d4457664bc931c54c357277348c63cf2b9b3e051ee720aea687a9200353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendoza, Noel E</creatorcontrib><creatorcontrib>Chen, Yen-Wei</creatorcontrib><creatorcontrib>Nakao, Zensho</creatorcontrib><creatorcontrib>Adachi, Tatsuhiro</creatorcontrib><creatorcontrib>Masuda, Yoshihisa</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied soft computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendoza, Noel E</au><au>Chen, Yen-Wei</au><au>Nakao, Zensho</au><au>Adachi, Tatsuhiro</au><au>Masuda, Yoshihisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A real multi-parent tri-hybrid evolutionary optimization method and its application in wind velocity estimation from wind profiler data</atitle><jtitle>Applied soft computing</jtitle><date>2001-12-01</date><risdate>2001</risdate><volume>1</volume><issue>3</issue><spage>225</spage><epage>235</epage><pages>225-235</pages><issn>1568-4946</issn><abstract>A real-coded multi-parent tri-hybrid evolutionary algorithm (EA) for problem optimization is presented. The hybrid EA algorithm combines the features of Simplex, stochastic relaxation (SR) and multi-parent EA reproduction in a model that encourages competition among the best individual solutions from various operations. Its strength has been evaluated using standard test functions and shown to do better than other methods. The algorithm's ability to handle noise is evident when applied to experiments involving resolution of overlapping wind profiler (WP) data. Results obtained using raw data closely matched those obtained with data preprocessed by a low-pass FFT filter. Resolution of low- speed wind and clutter signals in various degrees of overlap is made possible, thereby allowing the determination of wind velocity and variance to be executed with ease.</abstract><doi>10.1016/S1568-4946(01)00021-7</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1568-4946
ispartof Applied soft computing, 2001-12, Vol.1 (3), p.225-235
issn 1568-4946
language eng
recordid cdi_proquest_miscellaneous_26924298
source ScienceDirect Freedom Collection 2022-2024
title A real multi-parent tri-hybrid evolutionary optimization method and its application in wind velocity estimation from wind profiler data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A33%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20real%20multi-parent%20tri-hybrid%20evolutionary%20optimization%20method%20and%20its%20application%20in%20wind%20velocity%20estimation%20from%20wind%20profiler%20data&rft.jtitle=Applied%20soft%20computing&rft.au=Mendoza,%20Noel%20E&rft.date=2001-12-01&rft.volume=1&rft.issue=3&rft.spage=225&rft.epage=235&rft.pages=225-235&rft.issn=1568-4946&rft_id=info:doi/10.1016/S1568-4946(01)00021-7&rft_dat=%3Cproquest_cross%3E26924298%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c197t-678bc9d4457664bc931c54c357277348c63cf2b9b3e051ee720aea687a9200353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26924298&rft_id=info:pmid/&rfr_iscdi=true