Loading…
A real multi-parent tri-hybrid evolutionary optimization method and its application in wind velocity estimation from wind profiler data
A real-coded multi-parent tri-hybrid evolutionary algorithm (EA) for problem optimization is presented. The hybrid EA algorithm combines the features of Simplex, stochastic relaxation (SR) and multi-parent EA reproduction in a model that encourages competition among the best individual solutions fro...
Saved in:
Published in: | Applied soft computing 2001-12, Vol.1 (3), p.225-235 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c197t-678bc9d4457664bc931c54c357277348c63cf2b9b3e051ee720aea687a9200353 |
---|---|
cites | cdi_FETCH-LOGICAL-c197t-678bc9d4457664bc931c54c357277348c63cf2b9b3e051ee720aea687a9200353 |
container_end_page | 235 |
container_issue | 3 |
container_start_page | 225 |
container_title | Applied soft computing |
container_volume | 1 |
creator | Mendoza, Noel E Chen, Yen-Wei Nakao, Zensho Adachi, Tatsuhiro Masuda, Yoshihisa |
description | A real-coded multi-parent tri-hybrid evolutionary algorithm (EA) for problem optimization is presented. The hybrid EA algorithm combines the features of Simplex, stochastic relaxation (SR) and multi-parent EA reproduction in a model that encourages competition among the best individual solutions from various operations. Its strength has been evaluated using standard test functions and shown to do better than other methods. The algorithm's ability to handle noise is evident when applied to experiments involving resolution of overlapping wind profiler (WP) data. Results obtained using raw data closely matched those obtained with data preprocessed by a low-pass FFT filter. Resolution of low- speed wind and clutter signals in various degrees of overlap is made possible, thereby allowing the determination of wind velocity and variance to be executed with ease. |
doi_str_mv | 10.1016/S1568-4946(01)00021-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26924298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26924298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c197t-678bc9d4457664bc931c54c357277348c63cf2b9b3e051ee720aea687a9200353</originalsourceid><addsrcrecordid>eNo9kMtOxCAUhllo4nh5BBNWRhdVboV2OZl4SyZxoa4JQ2kGQ0sFOqa-gK8tMzWuOJz_P7cPgEuMbjHC_O4Vl7wqWM34NcI3CCGCC3EEFv_pE3Aa4wfK3ppUC_CzhMEoB7vRJVsMKpg-wRRssZ02wTbQ7Lwbk_W9ChP0Q7Kd_Vb7P-xM2voGqr6BNkWohsFZPUu2h18253fGeW3TBE3MhbPWBt_N6hB8a50JsFFJnYPjVrloLv7eM_D-cP-2eirWL4_Pq-W60LgWqeCi2ui6YawUnLMcUqxLpmkpiBCUVZpT3ZJNvaEGldgYQZAyildC1QQhWtIzcDX3zdM_x7yX7GzUxjnVGz9GSTIWRuoqG8vZqIOPMZhWDiHfECaJkdyjlgfUcs9UIiwPqKWgv1xwds4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26924298</pqid></control><display><type>article</type><title>A real multi-parent tri-hybrid evolutionary optimization method and its application in wind velocity estimation from wind profiler data</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Mendoza, Noel E ; Chen, Yen-Wei ; Nakao, Zensho ; Adachi, Tatsuhiro ; Masuda, Yoshihisa</creator><creatorcontrib>Mendoza, Noel E ; Chen, Yen-Wei ; Nakao, Zensho ; Adachi, Tatsuhiro ; Masuda, Yoshihisa</creatorcontrib><description>A real-coded multi-parent tri-hybrid evolutionary algorithm (EA) for problem optimization is presented. The hybrid EA algorithm combines the features of Simplex, stochastic relaxation (SR) and multi-parent EA reproduction in a model that encourages competition among the best individual solutions from various operations. Its strength has been evaluated using standard test functions and shown to do better than other methods. The algorithm's ability to handle noise is evident when applied to experiments involving resolution of overlapping wind profiler (WP) data. Results obtained using raw data closely matched those obtained with data preprocessed by a low-pass FFT filter. Resolution of low- speed wind and clutter signals in various degrees of overlap is made possible, thereby allowing the determination of wind velocity and variance to be executed with ease.</description><identifier>ISSN: 1568-4946</identifier><identifier>DOI: 10.1016/S1568-4946(01)00021-7</identifier><language>eng</language><ispartof>Applied soft computing, 2001-12, Vol.1 (3), p.225-235</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c197t-678bc9d4457664bc931c54c357277348c63cf2b9b3e051ee720aea687a9200353</citedby><cites>FETCH-LOGICAL-c197t-678bc9d4457664bc931c54c357277348c63cf2b9b3e051ee720aea687a9200353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mendoza, Noel E</creatorcontrib><creatorcontrib>Chen, Yen-Wei</creatorcontrib><creatorcontrib>Nakao, Zensho</creatorcontrib><creatorcontrib>Adachi, Tatsuhiro</creatorcontrib><creatorcontrib>Masuda, Yoshihisa</creatorcontrib><title>A real multi-parent tri-hybrid evolutionary optimization method and its application in wind velocity estimation from wind profiler data</title><title>Applied soft computing</title><description>A real-coded multi-parent tri-hybrid evolutionary algorithm (EA) for problem optimization is presented. The hybrid EA algorithm combines the features of Simplex, stochastic relaxation (SR) and multi-parent EA reproduction in a model that encourages competition among the best individual solutions from various operations. Its strength has been evaluated using standard test functions and shown to do better than other methods. The algorithm's ability to handle noise is evident when applied to experiments involving resolution of overlapping wind profiler (WP) data. Results obtained using raw data closely matched those obtained with data preprocessed by a low-pass FFT filter. Resolution of low- speed wind and clutter signals in various degrees of overlap is made possible, thereby allowing the determination of wind velocity and variance to be executed with ease.</description><issn>1568-4946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOxCAUhllo4nh5BBNWRhdVboV2OZl4SyZxoa4JQ2kGQ0sFOqa-gK8tMzWuOJz_P7cPgEuMbjHC_O4Vl7wqWM34NcI3CCGCC3EEFv_pE3Aa4wfK3ppUC_CzhMEoB7vRJVsMKpg-wRRssZ02wTbQ7Lwbk_W9ChP0Q7Kd_Vb7P-xM2voGqr6BNkWohsFZPUu2h18253fGeW3TBE3MhbPWBt_N6hB8a50JsFFJnYPjVrloLv7eM_D-cP-2eirWL4_Pq-W60LgWqeCi2ui6YawUnLMcUqxLpmkpiBCUVZpT3ZJNvaEGldgYQZAyildC1QQhWtIzcDX3zdM_x7yX7GzUxjnVGz9GSTIWRuoqG8vZqIOPMZhWDiHfECaJkdyjlgfUcs9UIiwPqKWgv1xwds4</recordid><startdate>20011201</startdate><enddate>20011201</enddate><creator>Mendoza, Noel E</creator><creator>Chen, Yen-Wei</creator><creator>Nakao, Zensho</creator><creator>Adachi, Tatsuhiro</creator><creator>Masuda, Yoshihisa</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20011201</creationdate><title>A real multi-parent tri-hybrid evolutionary optimization method and its application in wind velocity estimation from wind profiler data</title><author>Mendoza, Noel E ; Chen, Yen-Wei ; Nakao, Zensho ; Adachi, Tatsuhiro ; Masuda, Yoshihisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c197t-678bc9d4457664bc931c54c357277348c63cf2b9b3e051ee720aea687a9200353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendoza, Noel E</creatorcontrib><creatorcontrib>Chen, Yen-Wei</creatorcontrib><creatorcontrib>Nakao, Zensho</creatorcontrib><creatorcontrib>Adachi, Tatsuhiro</creatorcontrib><creatorcontrib>Masuda, Yoshihisa</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied soft computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendoza, Noel E</au><au>Chen, Yen-Wei</au><au>Nakao, Zensho</au><au>Adachi, Tatsuhiro</au><au>Masuda, Yoshihisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A real multi-parent tri-hybrid evolutionary optimization method and its application in wind velocity estimation from wind profiler data</atitle><jtitle>Applied soft computing</jtitle><date>2001-12-01</date><risdate>2001</risdate><volume>1</volume><issue>3</issue><spage>225</spage><epage>235</epage><pages>225-235</pages><issn>1568-4946</issn><abstract>A real-coded multi-parent tri-hybrid evolutionary algorithm (EA) for problem optimization is presented. The hybrid EA algorithm combines the features of Simplex, stochastic relaxation (SR) and multi-parent EA reproduction in a model that encourages competition among the best individual solutions from various operations. Its strength has been evaluated using standard test functions and shown to do better than other methods. The algorithm's ability to handle noise is evident when applied to experiments involving resolution of overlapping wind profiler (WP) data. Results obtained using raw data closely matched those obtained with data preprocessed by a low-pass FFT filter. Resolution of low- speed wind and clutter signals in various degrees of overlap is made possible, thereby allowing the determination of wind velocity and variance to be executed with ease.</abstract><doi>10.1016/S1568-4946(01)00021-7</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1568-4946 |
ispartof | Applied soft computing, 2001-12, Vol.1 (3), p.225-235 |
issn | 1568-4946 |
language | eng |
recordid | cdi_proquest_miscellaneous_26924298 |
source | ScienceDirect Freedom Collection 2022-2024 |
title | A real multi-parent tri-hybrid evolutionary optimization method and its application in wind velocity estimation from wind profiler data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A33%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20real%20multi-parent%20tri-hybrid%20evolutionary%20optimization%20method%20and%20its%20application%20in%20wind%20velocity%20estimation%20from%20wind%20profiler%20data&rft.jtitle=Applied%20soft%20computing&rft.au=Mendoza,%20Noel%20E&rft.date=2001-12-01&rft.volume=1&rft.issue=3&rft.spage=225&rft.epage=235&rft.pages=225-235&rft.issn=1568-4946&rft_id=info:doi/10.1016/S1568-4946(01)00021-7&rft_dat=%3Cproquest_cross%3E26924298%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c197t-678bc9d4457664bc931c54c357277348c63cf2b9b3e051ee720aea687a9200353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26924298&rft_id=info:pmid/&rfr_iscdi=true |