Loading…

Effect of in situ annealing on highly-mismatched In0.75Ga0.25As on InP grown using molecular beam epitaxy

We demonstrate that the electrical quality of junctions fabricated in lattice-mismatched In0.75Ga0.25As on InP grown by molecular beam epitaxy can be improved with the addition of in situ anneals in the buffer layer that separates the substrate from the In0.75Ga0.25As device layers. Near infrared ph...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 1999-07, Vol.28 (7), p.887-893
Main Authors: REN, Y, MICOVIC, M, CAI, W. Z, MOHNEY, S, LORD, S. M, MILLER, D. L, MAYER, A. T. S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We demonstrate that the electrical quality of junctions fabricated in lattice-mismatched In0.75Ga0.25As on InP grown by molecular beam epitaxy can be improved with the addition of in situ anneals in the buffer layer that separates the substrate from the In0.75Ga0.25As device layers. Near infrared photodetectors fabricated using this material had dark current densities of approximately 2.5 mA/cm2 at a reverse bias of 1 V, which is more than one order of magnitude smaller than commercially available photodetectors grown using vapor phase epitaxy. Transmission electron microscopy revealed that dislocations due to the lattice mismatch between the substrate and the epitaxial layer are confined primarily to the buffer layer for all samples studied. No significant differences in x-ray diffraction spectra or dislocation distribution were observed on samples with and without in situ annealing. Atomic force microscopy indicated that all samples had a crosshatch pattern, and that the average surface roughness of the sample that contained in situ anneals is a factor of three greater than the sample without in situ anneals.
ISSN:0361-5235
1543-186X
DOI:10.1007/s11664-999-0215-7