Loading…

Percolated Plasmonic Superlattices of Nanospheres with 1 nm‐Level Gap as High‐Index Metamaterials

Nanophotonics relies on precise control of refractive index (RI) which can be designed with metamaterials. Plasmonic superstructures of nanoparticles (NPs) can suggest a versatile way of tuning RI. However, the plasmonic effects in the superstructures demand 1 nm‐level exquisite control over the int...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2022-09, Vol.34 (35), p.e2203942-n/a
Main Authors: Shin, Dong‐In, Yoo, Seong Soo, Park, Seong Hun, Lee, Gaehang, Bae, Wan Ki, Kwon, Seok Joon, Yoo, Pil Jin, Yi, Gi‐Ra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3902-b6b8a006e6576bc1eea94c3f59b0fcbde7f9f7de49e591eb441ad4cbb365fa383
cites cdi_FETCH-LOGICAL-c3902-b6b8a006e6576bc1eea94c3f59b0fcbde7f9f7de49e591eb441ad4cbb365fa383
container_end_page n/a
container_issue 35
container_start_page e2203942
container_title Advanced materials (Weinheim)
container_volume 34
creator Shin, Dong‐In
Yoo, Seong Soo
Park, Seong Hun
Lee, Gaehang
Bae, Wan Ki
Kwon, Seok Joon
Yoo, Pil Jin
Yi, Gi‐Ra
description Nanophotonics relies on precise control of refractive index (RI) which can be designed with metamaterials. Plasmonic superstructures of nanoparticles (NPs) can suggest a versatile way of tuning RI. However, the plasmonic effects in the superstructures demand 1 nm‐level exquisite control over the interparticle gap, which is challenging in a sub‐wavelength NPs. Thus far, a large‐area demonstration has been mostly discouraged. Here, heteroligand AuNPs are prepared, which are stable in oil but become Janus particles at the oil–water interface, called “adaptive Janus particles.” NPs are bound at the interface and assembled into 2D arrays over square centimeters as toluene evaporates, which distinctively exhibits the RI tunability. In visible and NIR light, the 2D superstructures exhibit the highest‐ever RI (≈7.8) with varying the size and interparticle gap of NPs, which is successfully explained by a plasmonic percolation model. Furthermore, fully solution‐processable 2D plasmonic superstructures are proved to be advantageous in flexible photonic devices such as distributed Bragg reflectors. Heteroligand gold nanoparticles are stable in an oil phase but can be switched to stable Janus particles at the interface, which forms a 2D superlattice over square centimeters with nanometer‐precision particle‐to‐particle gap. The percolated 2D superstructure exhibits the highest‐ever refractive index (≈7.8) on varying the size and interparticle gap of the NPs, which is explained by a new theoretical model based on “plasmonic percolation.”
doi_str_mv 10.1002/adma.202203942
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2693774506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708706390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3902-b6b8a006e6576bc1eea94c3f59b0fcbde7f9f7de49e591eb441ad4cbb365fa383</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOD62rgNu3HS8SdO0WQ7jE0YdUNchTW-dSl8mHUd3_gR_o7_EyIiCG1eHe_jO4XIIOWAwZgD82BSNGXPgHGIl-AYZsYSzSIBKNskIVJxESopsm-x4_wgASoIcEZyjs11tBizovDa-6drK0ttljy6YQ2XR066k16btfL9AF85VNSwoo23z8fY-w2es6bnpqfH0onpYBO-yLfCFXuFgmlDrKlP7PbJVBsH9b90l92end9OLaHZzfjmdzCIbK-BRLvPMAEiUSSpzyxCNEjYuE5VDafMC01KVaYFCYaIY5kIwUwib57FMShNn8S45Wvf2rntaoh90U3mLdW1a7JZec6niNBUJyIAe_kEfu6Vrw3eap5ClAVEQqPGasq7z3mGpe1c1xr1qBvprdf21uv5ZPQTUOrCqanz9h9aTk6vJb_YT6qKJAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708706390</pqid></control><display><type>article</type><title>Percolated Plasmonic Superlattices of Nanospheres with 1 nm‐Level Gap as High‐Index Metamaterials</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Shin, Dong‐In ; Yoo, Seong Soo ; Park, Seong Hun ; Lee, Gaehang ; Bae, Wan Ki ; Kwon, Seok Joon ; Yoo, Pil Jin ; Yi, Gi‐Ra</creator><creatorcontrib>Shin, Dong‐In ; Yoo, Seong Soo ; Park, Seong Hun ; Lee, Gaehang ; Bae, Wan Ki ; Kwon, Seok Joon ; Yoo, Pil Jin ; Yi, Gi‐Ra</creatorcontrib><description>Nanophotonics relies on precise control of refractive index (RI) which can be designed with metamaterials. Plasmonic superstructures of nanoparticles (NPs) can suggest a versatile way of tuning RI. However, the plasmonic effects in the superstructures demand 1 nm‐level exquisite control over the interparticle gap, which is challenging in a sub‐wavelength NPs. Thus far, a large‐area demonstration has been mostly discouraged. Here, heteroligand AuNPs are prepared, which are stable in oil but become Janus particles at the oil–water interface, called “adaptive Janus particles.” NPs are bound at the interface and assembled into 2D arrays over square centimeters as toluene evaporates, which distinctively exhibits the RI tunability. In visible and NIR light, the 2D superstructures exhibit the highest‐ever RI (≈7.8) with varying the size and interparticle gap of NPs, which is successfully explained by a plasmonic percolation model. Furthermore, fully solution‐processable 2D plasmonic superstructures are proved to be advantageous in flexible photonic devices such as distributed Bragg reflectors. Heteroligand gold nanoparticles are stable in an oil phase but can be switched to stable Janus particles at the interface, which forms a 2D superlattice over square centimeters with nanometer‐precision particle‐to‐particle gap. The percolated 2D superstructure exhibits the highest‐ever refractive index (≈7.8) on varying the size and interparticle gap of the NPs, which is explained by a new theoretical model based on “plasmonic percolation.”</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202203942</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>2D superlattices ; Bragg reflectors ; colloids ; Gold ; gold nanoparticles ; high refractive index ; janus particles ; Metamaterials ; Nanoparticles ; Nanospheres ; Percolation ; Plasmonics ; Refractivity ; self‐assembly ; Superlattices ; Superstructures ; Toluene</subject><ispartof>Advanced materials (Weinheim), 2022-09, Vol.34 (35), p.e2203942-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3902-b6b8a006e6576bc1eea94c3f59b0fcbde7f9f7de49e591eb441ad4cbb365fa383</citedby><cites>FETCH-LOGICAL-c3902-b6b8a006e6576bc1eea94c3f59b0fcbde7f9f7de49e591eb441ad4cbb365fa383</cites><orcidid>0000-0003-1353-8988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shin, Dong‐In</creatorcontrib><creatorcontrib>Yoo, Seong Soo</creatorcontrib><creatorcontrib>Park, Seong Hun</creatorcontrib><creatorcontrib>Lee, Gaehang</creatorcontrib><creatorcontrib>Bae, Wan Ki</creatorcontrib><creatorcontrib>Kwon, Seok Joon</creatorcontrib><creatorcontrib>Yoo, Pil Jin</creatorcontrib><creatorcontrib>Yi, Gi‐Ra</creatorcontrib><title>Percolated Plasmonic Superlattices of Nanospheres with 1 nm‐Level Gap as High‐Index Metamaterials</title><title>Advanced materials (Weinheim)</title><description>Nanophotonics relies on precise control of refractive index (RI) which can be designed with metamaterials. Plasmonic superstructures of nanoparticles (NPs) can suggest a versatile way of tuning RI. However, the plasmonic effects in the superstructures demand 1 nm‐level exquisite control over the interparticle gap, which is challenging in a sub‐wavelength NPs. Thus far, a large‐area demonstration has been mostly discouraged. Here, heteroligand AuNPs are prepared, which are stable in oil but become Janus particles at the oil–water interface, called “adaptive Janus particles.” NPs are bound at the interface and assembled into 2D arrays over square centimeters as toluene evaporates, which distinctively exhibits the RI tunability. In visible and NIR light, the 2D superstructures exhibit the highest‐ever RI (≈7.8) with varying the size and interparticle gap of NPs, which is successfully explained by a plasmonic percolation model. Furthermore, fully solution‐processable 2D plasmonic superstructures are proved to be advantageous in flexible photonic devices such as distributed Bragg reflectors. Heteroligand gold nanoparticles are stable in an oil phase but can be switched to stable Janus particles at the interface, which forms a 2D superlattice over square centimeters with nanometer‐precision particle‐to‐particle gap. The percolated 2D superstructure exhibits the highest‐ever refractive index (≈7.8) on varying the size and interparticle gap of the NPs, which is explained by a new theoretical model based on “plasmonic percolation.”</description><subject>2D superlattices</subject><subject>Bragg reflectors</subject><subject>colloids</subject><subject>Gold</subject><subject>gold nanoparticles</subject><subject>high refractive index</subject><subject>janus particles</subject><subject>Metamaterials</subject><subject>Nanoparticles</subject><subject>Nanospheres</subject><subject>Percolation</subject><subject>Plasmonics</subject><subject>Refractivity</subject><subject>self‐assembly</subject><subject>Superlattices</subject><subject>Superstructures</subject><subject>Toluene</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOD62rgNu3HS8SdO0WQ7jE0YdUNchTW-dSl8mHUd3_gR_o7_EyIiCG1eHe_jO4XIIOWAwZgD82BSNGXPgHGIl-AYZsYSzSIBKNskIVJxESopsm-x4_wgASoIcEZyjs11tBizovDa-6drK0ttljy6YQ2XR066k16btfL9AF85VNSwoo23z8fY-w2es6bnpqfH0onpYBO-yLfCFXuFgmlDrKlP7PbJVBsH9b90l92end9OLaHZzfjmdzCIbK-BRLvPMAEiUSSpzyxCNEjYuE5VDafMC01KVaYFCYaIY5kIwUwib57FMShNn8S45Wvf2rntaoh90U3mLdW1a7JZec6niNBUJyIAe_kEfu6Vrw3eap5ClAVEQqPGasq7z3mGpe1c1xr1qBvprdf21uv5ZPQTUOrCqanz9h9aTk6vJb_YT6qKJAg</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Shin, Dong‐In</creator><creator>Yoo, Seong Soo</creator><creator>Park, Seong Hun</creator><creator>Lee, Gaehang</creator><creator>Bae, Wan Ki</creator><creator>Kwon, Seok Joon</creator><creator>Yoo, Pil Jin</creator><creator>Yi, Gi‐Ra</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1353-8988</orcidid></search><sort><creationdate>20220901</creationdate><title>Percolated Plasmonic Superlattices of Nanospheres with 1 nm‐Level Gap as High‐Index Metamaterials</title><author>Shin, Dong‐In ; Yoo, Seong Soo ; Park, Seong Hun ; Lee, Gaehang ; Bae, Wan Ki ; Kwon, Seok Joon ; Yoo, Pil Jin ; Yi, Gi‐Ra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3902-b6b8a006e6576bc1eea94c3f59b0fcbde7f9f7de49e591eb441ad4cbb365fa383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>2D superlattices</topic><topic>Bragg reflectors</topic><topic>colloids</topic><topic>Gold</topic><topic>gold nanoparticles</topic><topic>high refractive index</topic><topic>janus particles</topic><topic>Metamaterials</topic><topic>Nanoparticles</topic><topic>Nanospheres</topic><topic>Percolation</topic><topic>Plasmonics</topic><topic>Refractivity</topic><topic>self‐assembly</topic><topic>Superlattices</topic><topic>Superstructures</topic><topic>Toluene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Dong‐In</creatorcontrib><creatorcontrib>Yoo, Seong Soo</creatorcontrib><creatorcontrib>Park, Seong Hun</creatorcontrib><creatorcontrib>Lee, Gaehang</creatorcontrib><creatorcontrib>Bae, Wan Ki</creatorcontrib><creatorcontrib>Kwon, Seok Joon</creatorcontrib><creatorcontrib>Yoo, Pil Jin</creatorcontrib><creatorcontrib>Yi, Gi‐Ra</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Dong‐In</au><au>Yoo, Seong Soo</au><au>Park, Seong Hun</au><au>Lee, Gaehang</au><au>Bae, Wan Ki</au><au>Kwon, Seok Joon</au><au>Yoo, Pil Jin</au><au>Yi, Gi‐Ra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Percolated Plasmonic Superlattices of Nanospheres with 1 nm‐Level Gap as High‐Index Metamaterials</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>34</volume><issue>35</issue><spage>e2203942</spage><epage>n/a</epage><pages>e2203942-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Nanophotonics relies on precise control of refractive index (RI) which can be designed with metamaterials. Plasmonic superstructures of nanoparticles (NPs) can suggest a versatile way of tuning RI. However, the plasmonic effects in the superstructures demand 1 nm‐level exquisite control over the interparticle gap, which is challenging in a sub‐wavelength NPs. Thus far, a large‐area demonstration has been mostly discouraged. Here, heteroligand AuNPs are prepared, which are stable in oil but become Janus particles at the oil–water interface, called “adaptive Janus particles.” NPs are bound at the interface and assembled into 2D arrays over square centimeters as toluene evaporates, which distinctively exhibits the RI tunability. In visible and NIR light, the 2D superstructures exhibit the highest‐ever RI (≈7.8) with varying the size and interparticle gap of NPs, which is successfully explained by a plasmonic percolation model. Furthermore, fully solution‐processable 2D plasmonic superstructures are proved to be advantageous in flexible photonic devices such as distributed Bragg reflectors. Heteroligand gold nanoparticles are stable in an oil phase but can be switched to stable Janus particles at the interface, which forms a 2D superlattice over square centimeters with nanometer‐precision particle‐to‐particle gap. The percolated 2D superstructure exhibits the highest‐ever refractive index (≈7.8) on varying the size and interparticle gap of the NPs, which is explained by a new theoretical model based on “plasmonic percolation.”</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202203942</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1353-8988</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-09, Vol.34 (35), p.e2203942-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2693774506
source Wiley-Blackwell Read & Publish Collection
subjects 2D superlattices
Bragg reflectors
colloids
Gold
gold nanoparticles
high refractive index
janus particles
Metamaterials
Nanoparticles
Nanospheres
Percolation
Plasmonics
Refractivity
self‐assembly
Superlattices
Superstructures
Toluene
title Percolated Plasmonic Superlattices of Nanospheres with 1 nm‐Level Gap as High‐Index Metamaterials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A55%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Percolated%20Plasmonic%20Superlattices%20of%20Nanospheres%20with%201%20nm%E2%80%90Level%20Gap%20as%20High%E2%80%90Index%20Metamaterials&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Shin,%20Dong%E2%80%90In&rft.date=2022-09-01&rft.volume=34&rft.issue=35&rft.spage=e2203942&rft.epage=n/a&rft.pages=e2203942-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202203942&rft_dat=%3Cproquest_cross%3E2708706390%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3902-b6b8a006e6576bc1eea94c3f59b0fcbde7f9f7de49e591eb441ad4cbb365fa383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2708706390&rft_id=info:pmid/&rfr_iscdi=true