Loading…
Programmable Ligation-Transcription Circuit-Driven Cascade Amplification Machinery for Multiple Long Noncoding RNAs Detection in Lung Tissues
The measurement of long noncoding RNAs (lncRNAs) is essential to diagnosis and treatment of various diseases such as cancers. Herein, we develop a simple method to simultaneously detect multiple lncRNAs using programmable ligation-transcription circuit-driven cascade amplification and single-molecul...
Saved in:
Published in: | Analytical chemistry (Washington) 2022-08, Vol.94 (30), p.10573-10578 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The measurement of long noncoding RNAs (lncRNAs) is essential to diagnosis and treatment of various diseases such as cancers. Herein, we develop a simple method to simultaneously detect multiple lncRNAs using programmable ligation-transcription circuit-driven cascade amplification and single-molecule counting. The presence of targets lncRNA HOTAIR and lncRNA MALAT1 activates the ligation-transcription circuits to produce two corresponding functional RNAs. The functional RNAs then cyclically initiate the digestion of signal probes by duplex-specific nuclease to liberate Cy5 and Cy3 molecules. After magnetic separation, the liberated Cy5 and Cy3 molecules are measured by single-molecule counting. In this assay, a single lncRNA can activate ligation-transcription circuit to generate abundant functional RNAs, endowing this assay with high sensitivity. Integration of single-molecule counting ensures the high sensitivity. This method shows extremely high sensitivity with a limit of detection (LOD) of 0.043 aM for HOX gene antisense intergenic RNA (lncRNA HOTAIR) and 0.126 aM for mammalian metastasis-related lung adenocarcinoma transcript 1 (lncRNA MALAT1). Importantly, this method enables simultaneous measurement of multiple endogenous lncRNAs at the single-cell level, and it may discriminate the expressions of various lncRNA in lung tumor tissues of nonsmall cell lung cancer (NSCLC) patients and their corresponding healthy adjacent tissues, offering a promising platform for clinical diagnosis and biomedical research. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.2c02685 |