Loading…
A stacked meta-ensemble for protein inter-residue distance prediction
Predicted inter-residue distances are a key behind recent success in high quality protein structure prediction (PSP). However, prediction of both short and long distance values together is challenging. Consequently, predicted short distances are mostly used by existing PSP methods. In this paper, we...
Saved in:
Published in: | Computers in biology and medicine 2022-09, Vol.148, p.105824-105824, Article 105824 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c309t-6997e90e8201e41b7d3c544be6b782d3e4cc220c73e503d07f377268219a0c143 |
---|---|
cites | cdi_FETCH-LOGICAL-c309t-6997e90e8201e41b7d3c544be6b782d3e4cc220c73e503d07f377268219a0c143 |
container_end_page | 105824 |
container_issue | |
container_start_page | 105824 |
container_title | Computers in biology and medicine |
container_volume | 148 |
creator | Rahman, Julia Newton, M.A. Hakim Hasan, Md. Al Mehedi Sattar, Abdul |
description | Predicted inter-residue distances are a key behind recent success in high quality protein structure prediction (PSP). However, prediction of both short and long distance values together is challenging. Consequently, predicted short distances are mostly used by existing PSP methods. In this paper, we use a stacked meta-ensemble method to combine deep learning models trained for different ranges of real-valued distances. On five benchmark sets of proteins, our proposed inter-residue distance prediction method improves mean Local Distance Different Test (LDDT) scores at least by 5% over existing such methods. Moreover, using a real-valued distance based conformational search algorithm, we also show that predicted long distances help obtain significantly better protein conformations than when only predicted short distances are used. Our method is named meta-ensemble for distance prediction (MDP) and its program is available from https://gitlab.com/mahnewton/mdp.
•A stacked meta-ensemble method to predict protein inter-residue long-range real-valued distances.•Improved Cβ−Cβ, Cα−Cα and N–O long-range real-valued distance prediction.•Improved protein 3D structure construction using long-range predicted distances.•The distance predictor’s program is available from https://gitlab.com/mahnewton/mdp. |
doi_str_mv | 10.1016/j.compbiomed.2022.105824 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2693779444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482522005790</els_id><sourcerecordid>2693779444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-6997e90e8201e41b7d3c544be6b782d3e4cc220c73e503d07f377268219a0c143</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK7-DwUvXrpOPtq0x3XxCxa86Dm0yRRS22ZNUsH_3iwVBC-eBmbee7z5EZJR2FCg5W2_0W48tNaNaDYMGEvromLihKxoJescCi5OyQqAQi4qVpyTixB6ABDAYUXut1mIjX5Hk40YmxyngGM7YNY5nx28i2inzE4Rfe4xWDNjZmxyTBrTGY3V0brpkpx1zRDw6meuydvD_evuKd-_PD7vtvtcc6hjXta1xBqwYkBR0FYargshWixbWTHDUWjNGGjJsQBuQHZcSlZWjNYNaCr4mtwsuanZx4whqtEGjcPQTOjmoFhZJ0ctxFF6_Ufau9lPqZ1iEkRVcijKpKoWlfYuBI-dOng7Nv5LUVBHvqpXv3zVka9a-Cbr3WLF9PCnRa-Ctpi4GOtRR2Wc_T_kG4yuhyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704863056</pqid></control><display><type>article</type><title>A stacked meta-ensemble for protein inter-residue distance prediction</title><source>ScienceDirect Freedom Collection</source><creator>Rahman, Julia ; Newton, M.A. Hakim ; Hasan, Md. Al Mehedi ; Sattar, Abdul</creator><creatorcontrib>Rahman, Julia ; Newton, M.A. Hakim ; Hasan, Md. Al Mehedi ; Sattar, Abdul</creatorcontrib><description>Predicted inter-residue distances are a key behind recent success in high quality protein structure prediction (PSP). However, prediction of both short and long distance values together is challenging. Consequently, predicted short distances are mostly used by existing PSP methods. In this paper, we use a stacked meta-ensemble method to combine deep learning models trained for different ranges of real-valued distances. On five benchmark sets of proteins, our proposed inter-residue distance prediction method improves mean Local Distance Different Test (LDDT) scores at least by 5% over existing such methods. Moreover, using a real-valued distance based conformational search algorithm, we also show that predicted long distances help obtain significantly better protein conformations than when only predicted short distances are used. Our method is named meta-ensemble for distance prediction (MDP) and its program is available from https://gitlab.com/mahnewton/mdp.
•A stacked meta-ensemble method to predict protein inter-residue long-range real-valued distances.•Improved Cβ−Cβ, Cα−Cα and N–O long-range real-valued distance prediction.•Improved protein 3D structure construction using long-range predicted distances.•The distance predictor’s program is available from https://gitlab.com/mahnewton/mdp.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2022.105824</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Biology ; Computers ; Datasets ; Deep learning ; Ensemble learning ; Inter-residue distance ; Machine learning ; Methods ; Predictions ; Protein structure ; Protein structure prediction ; Proteins ; Real-valued distance ; Residues ; Search algorithms</subject><ispartof>Computers in biology and medicine, 2022-09, Vol.148, p.105824-105824, Article 105824</ispartof><rights>2022 Elsevier Ltd</rights><rights>2022. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-6997e90e8201e41b7d3c544be6b782d3e4cc220c73e503d07f377268219a0c143</citedby><cites>FETCH-LOGICAL-c309t-6997e90e8201e41b7d3c544be6b782d3e4cc220c73e503d07f377268219a0c143</cites><orcidid>0000-0001-5655-0683 ; 0000-0003-2966-7055 ; 0000-0001-5005-9922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rahman, Julia</creatorcontrib><creatorcontrib>Newton, M.A. Hakim</creatorcontrib><creatorcontrib>Hasan, Md. Al Mehedi</creatorcontrib><creatorcontrib>Sattar, Abdul</creatorcontrib><title>A stacked meta-ensemble for protein inter-residue distance prediction</title><title>Computers in biology and medicine</title><description>Predicted inter-residue distances are a key behind recent success in high quality protein structure prediction (PSP). However, prediction of both short and long distance values together is challenging. Consequently, predicted short distances are mostly used by existing PSP methods. In this paper, we use a stacked meta-ensemble method to combine deep learning models trained for different ranges of real-valued distances. On five benchmark sets of proteins, our proposed inter-residue distance prediction method improves mean Local Distance Different Test (LDDT) scores at least by 5% over existing such methods. Moreover, using a real-valued distance based conformational search algorithm, we also show that predicted long distances help obtain significantly better protein conformations than when only predicted short distances are used. Our method is named meta-ensemble for distance prediction (MDP) and its program is available from https://gitlab.com/mahnewton/mdp.
•A stacked meta-ensemble method to predict protein inter-residue long-range real-valued distances.•Improved Cβ−Cβ, Cα−Cα and N–O long-range real-valued distance prediction.•Improved protein 3D structure construction using long-range predicted distances.•The distance predictor’s program is available from https://gitlab.com/mahnewton/mdp.</description><subject>Algorithms</subject><subject>Biology</subject><subject>Computers</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Ensemble learning</subject><subject>Inter-residue distance</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Predictions</subject><subject>Protein structure</subject><subject>Protein structure prediction</subject><subject>Proteins</subject><subject>Real-valued distance</subject><subject>Residues</subject><subject>Search algorithms</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK7-DwUvXrpOPtq0x3XxCxa86Dm0yRRS22ZNUsH_3iwVBC-eBmbee7z5EZJR2FCg5W2_0W48tNaNaDYMGEvromLihKxoJescCi5OyQqAQi4qVpyTixB6ABDAYUXut1mIjX5Hk40YmxyngGM7YNY5nx28i2inzE4Rfe4xWDNjZmxyTBrTGY3V0brpkpx1zRDw6meuydvD_evuKd-_PD7vtvtcc6hjXta1xBqwYkBR0FYargshWixbWTHDUWjNGGjJsQBuQHZcSlZWjNYNaCr4mtwsuanZx4whqtEGjcPQTOjmoFhZJ0ctxFF6_Ufau9lPqZ1iEkRVcijKpKoWlfYuBI-dOng7Nv5LUVBHvqpXv3zVka9a-Cbr3WLF9PCnRa-Ctpi4GOtRR2Wc_T_kG4yuhyc</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Rahman, Julia</creator><creator>Newton, M.A. Hakim</creator><creator>Hasan, Md. Al Mehedi</creator><creator>Sattar, Abdul</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5655-0683</orcidid><orcidid>https://orcid.org/0000-0003-2966-7055</orcidid><orcidid>https://orcid.org/0000-0001-5005-9922</orcidid></search><sort><creationdate>202209</creationdate><title>A stacked meta-ensemble for protein inter-residue distance prediction</title><author>Rahman, Julia ; Newton, M.A. Hakim ; Hasan, Md. Al Mehedi ; Sattar, Abdul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-6997e90e8201e41b7d3c544be6b782d3e4cc220c73e503d07f377268219a0c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biology</topic><topic>Computers</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Ensemble learning</topic><topic>Inter-residue distance</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Predictions</topic><topic>Protein structure</topic><topic>Protein structure prediction</topic><topic>Proteins</topic><topic>Real-valued distance</topic><topic>Residues</topic><topic>Search algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Julia</creatorcontrib><creatorcontrib>Newton, M.A. Hakim</creatorcontrib><creatorcontrib>Hasan, Md. Al Mehedi</creatorcontrib><creatorcontrib>Sattar, Abdul</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>ProQuest Biological Science Journals</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Julia</au><au>Newton, M.A. Hakim</au><au>Hasan, Md. Al Mehedi</au><au>Sattar, Abdul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A stacked meta-ensemble for protein inter-residue distance prediction</atitle><jtitle>Computers in biology and medicine</jtitle><date>2022-09</date><risdate>2022</risdate><volume>148</volume><spage>105824</spage><epage>105824</epage><pages>105824-105824</pages><artnum>105824</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Predicted inter-residue distances are a key behind recent success in high quality protein structure prediction (PSP). However, prediction of both short and long distance values together is challenging. Consequently, predicted short distances are mostly used by existing PSP methods. In this paper, we use a stacked meta-ensemble method to combine deep learning models trained for different ranges of real-valued distances. On five benchmark sets of proteins, our proposed inter-residue distance prediction method improves mean Local Distance Different Test (LDDT) scores at least by 5% over existing such methods. Moreover, using a real-valued distance based conformational search algorithm, we also show that predicted long distances help obtain significantly better protein conformations than when only predicted short distances are used. Our method is named meta-ensemble for distance prediction (MDP) and its program is available from https://gitlab.com/mahnewton/mdp.
•A stacked meta-ensemble method to predict protein inter-residue long-range real-valued distances.•Improved Cβ−Cβ, Cα−Cα and N–O long-range real-valued distance prediction.•Improved protein 3D structure construction using long-range predicted distances.•The distance predictor’s program is available from https://gitlab.com/mahnewton/mdp.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compbiomed.2022.105824</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5655-0683</orcidid><orcidid>https://orcid.org/0000-0003-2966-7055</orcidid><orcidid>https://orcid.org/0000-0001-5005-9922</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2022-09, Vol.148, p.105824-105824, Article 105824 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_2693779444 |
source | ScienceDirect Freedom Collection |
subjects | Algorithms Biology Computers Datasets Deep learning Ensemble learning Inter-residue distance Machine learning Methods Predictions Protein structure Protein structure prediction Proteins Real-valued distance Residues Search algorithms |
title | A stacked meta-ensemble for protein inter-residue distance prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20stacked%20meta-ensemble%20for%20protein%20inter-residue%20distance%20prediction&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Rahman,%20Julia&rft.date=2022-09&rft.volume=148&rft.spage=105824&rft.epage=105824&rft.pages=105824-105824&rft.artnum=105824&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2022.105824&rft_dat=%3Cproquest_cross%3E2693779444%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-6997e90e8201e41b7d3c544be6b782d3e4cc220c73e503d07f377268219a0c143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2704863056&rft_id=info:pmid/&rfr_iscdi=true |