Loading…

A stacked meta-ensemble for protein inter-residue distance prediction

Predicted inter-residue distances are a key behind recent success in high quality protein structure prediction (PSP). However, prediction of both short and long distance values together is challenging. Consequently, predicted short distances are mostly used by existing PSP methods. In this paper, we...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine 2022-09, Vol.148, p.105824-105824, Article 105824
Main Authors: Rahman, Julia, Newton, M.A. Hakim, Hasan, Md. Al Mehedi, Sattar, Abdul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c309t-6997e90e8201e41b7d3c544be6b782d3e4cc220c73e503d07f377268219a0c143
cites cdi_FETCH-LOGICAL-c309t-6997e90e8201e41b7d3c544be6b782d3e4cc220c73e503d07f377268219a0c143
container_end_page 105824
container_issue
container_start_page 105824
container_title Computers in biology and medicine
container_volume 148
creator Rahman, Julia
Newton, M.A. Hakim
Hasan, Md. Al Mehedi
Sattar, Abdul
description Predicted inter-residue distances are a key behind recent success in high quality protein structure prediction (PSP). However, prediction of both short and long distance values together is challenging. Consequently, predicted short distances are mostly used by existing PSP methods. In this paper, we use a stacked meta-ensemble method to combine deep learning models trained for different ranges of real-valued distances. On five benchmark sets of proteins, our proposed inter-residue distance prediction method improves mean Local Distance Different Test (LDDT) scores at least by 5% over existing such methods. Moreover, using a real-valued distance based conformational search algorithm, we also show that predicted long distances help obtain significantly better protein conformations than when only predicted short distances are used. Our method is named meta-ensemble for distance prediction (MDP) and its program is available from https://gitlab.com/mahnewton/mdp. •A stacked meta-ensemble method to predict protein inter-residue long-range real-valued distances.•Improved Cβ−Cβ, Cα−Cα and N–O long-range real-valued distance prediction.•Improved protein 3D structure construction using long-range predicted distances.•The distance predictor’s program is available from https://gitlab.com/mahnewton/mdp.
doi_str_mv 10.1016/j.compbiomed.2022.105824
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2693779444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482522005790</els_id><sourcerecordid>2693779444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-6997e90e8201e41b7d3c544be6b782d3e4cc220c73e503d07f377268219a0c143</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK7-DwUvXrpOPtq0x3XxCxa86Dm0yRRS22ZNUsH_3iwVBC-eBmbee7z5EZJR2FCg5W2_0W48tNaNaDYMGEvromLihKxoJescCi5OyQqAQi4qVpyTixB6ABDAYUXut1mIjX5Hk40YmxyngGM7YNY5nx28i2inzE4Rfe4xWDNjZmxyTBrTGY3V0brpkpx1zRDw6meuydvD_evuKd-_PD7vtvtcc6hjXta1xBqwYkBR0FYargshWixbWTHDUWjNGGjJsQBuQHZcSlZWjNYNaCr4mtwsuanZx4whqtEGjcPQTOjmoFhZJ0ctxFF6_Ufau9lPqZ1iEkRVcijKpKoWlfYuBI-dOng7Nv5LUVBHvqpXv3zVka9a-Cbr3WLF9PCnRa-Ctpi4GOtRR2Wc_T_kG4yuhyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704863056</pqid></control><display><type>article</type><title>A stacked meta-ensemble for protein inter-residue distance prediction</title><source>ScienceDirect Freedom Collection</source><creator>Rahman, Julia ; Newton, M.A. Hakim ; Hasan, Md. Al Mehedi ; Sattar, Abdul</creator><creatorcontrib>Rahman, Julia ; Newton, M.A. Hakim ; Hasan, Md. Al Mehedi ; Sattar, Abdul</creatorcontrib><description>Predicted inter-residue distances are a key behind recent success in high quality protein structure prediction (PSP). However, prediction of both short and long distance values together is challenging. Consequently, predicted short distances are mostly used by existing PSP methods. In this paper, we use a stacked meta-ensemble method to combine deep learning models trained for different ranges of real-valued distances. On five benchmark sets of proteins, our proposed inter-residue distance prediction method improves mean Local Distance Different Test (LDDT) scores at least by 5% over existing such methods. Moreover, using a real-valued distance based conformational search algorithm, we also show that predicted long distances help obtain significantly better protein conformations than when only predicted short distances are used. Our method is named meta-ensemble for distance prediction (MDP) and its program is available from https://gitlab.com/mahnewton/mdp. •A stacked meta-ensemble method to predict protein inter-residue long-range real-valued distances.•Improved Cβ−Cβ, Cα−Cα and N–O long-range real-valued distance prediction.•Improved protein 3D structure construction using long-range predicted distances.•The distance predictor’s program is available from https://gitlab.com/mahnewton/mdp.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2022.105824</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Biology ; Computers ; Datasets ; Deep learning ; Ensemble learning ; Inter-residue distance ; Machine learning ; Methods ; Predictions ; Protein structure ; Protein structure prediction ; Proteins ; Real-valued distance ; Residues ; Search algorithms</subject><ispartof>Computers in biology and medicine, 2022-09, Vol.148, p.105824-105824, Article 105824</ispartof><rights>2022 Elsevier Ltd</rights><rights>2022. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-6997e90e8201e41b7d3c544be6b782d3e4cc220c73e503d07f377268219a0c143</citedby><cites>FETCH-LOGICAL-c309t-6997e90e8201e41b7d3c544be6b782d3e4cc220c73e503d07f377268219a0c143</cites><orcidid>0000-0001-5655-0683 ; 0000-0003-2966-7055 ; 0000-0001-5005-9922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rahman, Julia</creatorcontrib><creatorcontrib>Newton, M.A. Hakim</creatorcontrib><creatorcontrib>Hasan, Md. Al Mehedi</creatorcontrib><creatorcontrib>Sattar, Abdul</creatorcontrib><title>A stacked meta-ensemble for protein inter-residue distance prediction</title><title>Computers in biology and medicine</title><description>Predicted inter-residue distances are a key behind recent success in high quality protein structure prediction (PSP). However, prediction of both short and long distance values together is challenging. Consequently, predicted short distances are mostly used by existing PSP methods. In this paper, we use a stacked meta-ensemble method to combine deep learning models trained for different ranges of real-valued distances. On five benchmark sets of proteins, our proposed inter-residue distance prediction method improves mean Local Distance Different Test (LDDT) scores at least by 5% over existing such methods. Moreover, using a real-valued distance based conformational search algorithm, we also show that predicted long distances help obtain significantly better protein conformations than when only predicted short distances are used. Our method is named meta-ensemble for distance prediction (MDP) and its program is available from https://gitlab.com/mahnewton/mdp. •A stacked meta-ensemble method to predict protein inter-residue long-range real-valued distances.•Improved Cβ−Cβ, Cα−Cα and N–O long-range real-valued distance prediction.•Improved protein 3D structure construction using long-range predicted distances.•The distance predictor’s program is available from https://gitlab.com/mahnewton/mdp.</description><subject>Algorithms</subject><subject>Biology</subject><subject>Computers</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Ensemble learning</subject><subject>Inter-residue distance</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Predictions</subject><subject>Protein structure</subject><subject>Protein structure prediction</subject><subject>Proteins</subject><subject>Real-valued distance</subject><subject>Residues</subject><subject>Search algorithms</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK7-DwUvXrpOPtq0x3XxCxa86Dm0yRRS22ZNUsH_3iwVBC-eBmbee7z5EZJR2FCg5W2_0W48tNaNaDYMGEvromLihKxoJescCi5OyQqAQi4qVpyTixB6ABDAYUXut1mIjX5Hk40YmxyngGM7YNY5nx28i2inzE4Rfe4xWDNjZmxyTBrTGY3V0brpkpx1zRDw6meuydvD_evuKd-_PD7vtvtcc6hjXta1xBqwYkBR0FYargshWixbWTHDUWjNGGjJsQBuQHZcSlZWjNYNaCr4mtwsuanZx4whqtEGjcPQTOjmoFhZJ0ctxFF6_Ufau9lPqZ1iEkRVcijKpKoWlfYuBI-dOng7Nv5LUVBHvqpXv3zVka9a-Cbr3WLF9PCnRa-Ctpi4GOtRR2Wc_T_kG4yuhyc</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Rahman, Julia</creator><creator>Newton, M.A. Hakim</creator><creator>Hasan, Md. Al Mehedi</creator><creator>Sattar, Abdul</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5655-0683</orcidid><orcidid>https://orcid.org/0000-0003-2966-7055</orcidid><orcidid>https://orcid.org/0000-0001-5005-9922</orcidid></search><sort><creationdate>202209</creationdate><title>A stacked meta-ensemble for protein inter-residue distance prediction</title><author>Rahman, Julia ; Newton, M.A. Hakim ; Hasan, Md. Al Mehedi ; Sattar, Abdul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-6997e90e8201e41b7d3c544be6b782d3e4cc220c73e503d07f377268219a0c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biology</topic><topic>Computers</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Ensemble learning</topic><topic>Inter-residue distance</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Predictions</topic><topic>Protein structure</topic><topic>Protein structure prediction</topic><topic>Proteins</topic><topic>Real-valued distance</topic><topic>Residues</topic><topic>Search algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Julia</creatorcontrib><creatorcontrib>Newton, M.A. Hakim</creatorcontrib><creatorcontrib>Hasan, Md. Al Mehedi</creatorcontrib><creatorcontrib>Sattar, Abdul</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>ProQuest Biological Science Journals</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Julia</au><au>Newton, M.A. Hakim</au><au>Hasan, Md. Al Mehedi</au><au>Sattar, Abdul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A stacked meta-ensemble for protein inter-residue distance prediction</atitle><jtitle>Computers in biology and medicine</jtitle><date>2022-09</date><risdate>2022</risdate><volume>148</volume><spage>105824</spage><epage>105824</epage><pages>105824-105824</pages><artnum>105824</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Predicted inter-residue distances are a key behind recent success in high quality protein structure prediction (PSP). However, prediction of both short and long distance values together is challenging. Consequently, predicted short distances are mostly used by existing PSP methods. In this paper, we use a stacked meta-ensemble method to combine deep learning models trained for different ranges of real-valued distances. On five benchmark sets of proteins, our proposed inter-residue distance prediction method improves mean Local Distance Different Test (LDDT) scores at least by 5% over existing such methods. Moreover, using a real-valued distance based conformational search algorithm, we also show that predicted long distances help obtain significantly better protein conformations than when only predicted short distances are used. Our method is named meta-ensemble for distance prediction (MDP) and its program is available from https://gitlab.com/mahnewton/mdp. •A stacked meta-ensemble method to predict protein inter-residue long-range real-valued distances.•Improved Cβ−Cβ, Cα−Cα and N–O long-range real-valued distance prediction.•Improved protein 3D structure construction using long-range predicted distances.•The distance predictor’s program is available from https://gitlab.com/mahnewton/mdp.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compbiomed.2022.105824</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5655-0683</orcidid><orcidid>https://orcid.org/0000-0003-2966-7055</orcidid><orcidid>https://orcid.org/0000-0001-5005-9922</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2022-09, Vol.148, p.105824-105824, Article 105824
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_2693779444
source ScienceDirect Freedom Collection
subjects Algorithms
Biology
Computers
Datasets
Deep learning
Ensemble learning
Inter-residue distance
Machine learning
Methods
Predictions
Protein structure
Protein structure prediction
Proteins
Real-valued distance
Residues
Search algorithms
title A stacked meta-ensemble for protein inter-residue distance prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20stacked%20meta-ensemble%20for%20protein%20inter-residue%20distance%20prediction&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Rahman,%20Julia&rft.date=2022-09&rft.volume=148&rft.spage=105824&rft.epage=105824&rft.pages=105824-105824&rft.artnum=105824&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2022.105824&rft_dat=%3Cproquest_cross%3E2693779444%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-6997e90e8201e41b7d3c544be6b782d3e4cc220c73e503d07f377268219a0c143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2704863056&rft_id=info:pmid/&rfr_iscdi=true