Loading…
Genetic Algorithm for the Extraction of Nonanalytic Objects from Multiple Dimensional Parameter Space
A new approach of the Hough transform is proposed, which makes use of the genetic searching algorithm. By using this proposed algorithm, we can resolve the main obstacle of the Hough transform, which demands an enormous amount of storage for the Hough space. The idea of this genetic Hough technique...
Saved in:
Published in: | Computer vision and image understanding 1999-01, Vol.73 (1), p.1-13 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c346t-1fad358d539e71215ee74320bffe8c2dbcbd1627b10e97e818946bcac72ed10a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c346t-1fad358d539e71215ee74320bffe8c2dbcbd1627b10e97e818946bcac72ed10a3 |
container_end_page | 13 |
container_issue | 1 |
container_start_page | 1 |
container_title | Computer vision and image understanding |
container_volume | 73 |
creator | Ser, P.K. Choy, Clifford S.T. Siu, W.C. |
description | A new approach of the Hough transform is proposed, which makes use of the genetic searching algorithm. By using this proposed algorithm, we can resolve the main obstacle of the Hough transform, which demands an enormous amount of storage for the Hough space. The idea of this genetic Hough technique is applicable to the recognition of both analytic and nonanalytic patterns. Based on the analysis of peak formation in the 4D generalized Hough transform's parameter space, a fitness function is derived, which represents the statistical weight of the existence of desired objects. By using the genetic approach to extract peaks in the parameter space, the physical storage for the 4D Hough parameter domain is not required during the detection while the accuracy of the detected parameters can be significantly improved. |
doi_str_mv | 10.1006/cviu.1998.0695 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26942197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1077314298906956</els_id><sourcerecordid>26942197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-1fad358d539e71215ee74320bffe8c2dbcbd1627b10e97e818946bcac72ed10a3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhhdR8PPqOQfxtjWT_cyx1FoFtYIK3kI2O9FIdlOTtOi_d5cWPHmaOTzvO8yTJOdAJ0BpeaU2Zj0BzusJLXmxlxwB5TRlWfG2P-5VlWaQs8PkOIRPSgFyDkcJLrDHaBSZ2nfnTfzoiHaexA8k8-_opYrG9cRp8uh62Uv7M7LL5hNVDER715GHtY1mZZFcmw77MODSkifpZYcRPXleSYWnyYGWNuDZbp4krzfzl9lter9c3M2m96nK8jKmoGWbFXVbZBwrYFAgVnnGaKM11oq1jWpaKFnVAEVeYQ01z8tGSVUxbIHK7CS53PauvPtaY4iiM0GhtbJHtw6ClTxnwKsBnGxB5V0IHrVYedNJ_yOAitGmGG2K0aYYbQ6Bi12zDEpa7WWvTPhLlUUOBR-weovh8OXGoBdBGewVtsYPykTrzH8XfgGRZYpy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26942197</pqid></control><display><type>article</type><title>Genetic Algorithm for the Extraction of Nonanalytic Objects from Multiple Dimensional Parameter Space</title><source>ScienceDirect Journals</source><creator>Ser, P.K. ; Choy, Clifford S.T. ; Siu, W.C.</creator><creatorcontrib>Ser, P.K. ; Choy, Clifford S.T. ; Siu, W.C.</creatorcontrib><description>A new approach of the Hough transform is proposed, which makes use of the genetic searching algorithm. By using this proposed algorithm, we can resolve the main obstacle of the Hough transform, which demands an enormous amount of storage for the Hough space. The idea of this genetic Hough technique is applicable to the recognition of both analytic and nonanalytic patterns. Based on the analysis of peak formation in the 4D generalized Hough transform's parameter space, a fitness function is derived, which represents the statistical weight of the existence of desired objects. By using the genetic approach to extract peaks in the parameter space, the physical storage for the 4D Hough parameter domain is not required during the detection while the accuracy of the detected parameters can be significantly improved.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1006/cviu.1998.0695</identifier><identifier>CODEN: CVIUF4</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Pattern recognition. Digital image processing. Computational geometry ; Theoretical computing</subject><ispartof>Computer vision and image understanding, 1999-01, Vol.73 (1), p.1-13</ispartof><rights>1999 Academic Press</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-1fad358d539e71215ee74320bffe8c2dbcbd1627b10e97e818946bcac72ed10a3</citedby><cites>FETCH-LOGICAL-c346t-1fad358d539e71215ee74320bffe8c2dbcbd1627b10e97e818946bcac72ed10a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1654159$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ser, P.K.</creatorcontrib><creatorcontrib>Choy, Clifford S.T.</creatorcontrib><creatorcontrib>Siu, W.C.</creatorcontrib><title>Genetic Algorithm for the Extraction of Nonanalytic Objects from Multiple Dimensional Parameter Space</title><title>Computer vision and image understanding</title><description>A new approach of the Hough transform is proposed, which makes use of the genetic searching algorithm. By using this proposed algorithm, we can resolve the main obstacle of the Hough transform, which demands an enormous amount of storage for the Hough space. The idea of this genetic Hough technique is applicable to the recognition of both analytic and nonanalytic patterns. Based on the analysis of peak formation in the 4D generalized Hough transform's parameter space, a fitness function is derived, which represents the statistical weight of the existence of desired objects. By using the genetic approach to extract peaks in the parameter space, the physical storage for the 4D Hough parameter domain is not required during the detection while the accuracy of the detected parameters can be significantly improved.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Theoretical computing</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhhdR8PPqOQfxtjWT_cyx1FoFtYIK3kI2O9FIdlOTtOi_d5cWPHmaOTzvO8yTJOdAJ0BpeaU2Zj0BzusJLXmxlxwB5TRlWfG2P-5VlWaQs8PkOIRPSgFyDkcJLrDHaBSZ2nfnTfzoiHaexA8k8-_opYrG9cRp8uh62Uv7M7LL5hNVDER715GHtY1mZZFcmw77MODSkifpZYcRPXleSYWnyYGWNuDZbp4krzfzl9lter9c3M2m96nK8jKmoGWbFXVbZBwrYFAgVnnGaKM11oq1jWpaKFnVAEVeYQ01z8tGSVUxbIHK7CS53PauvPtaY4iiM0GhtbJHtw6ClTxnwKsBnGxB5V0IHrVYedNJ_yOAitGmGG2K0aYYbQ6Bi12zDEpa7WWvTPhLlUUOBR-weovh8OXGoBdBGewVtsYPykTrzH8XfgGRZYpy</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Ser, P.K.</creator><creator>Choy, Clifford S.T.</creator><creator>Siu, W.C.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19990101</creationdate><title>Genetic Algorithm for the Extraction of Nonanalytic Objects from Multiple Dimensional Parameter Space</title><author>Ser, P.K. ; Choy, Clifford S.T. ; Siu, W.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-1fad358d539e71215ee74320bffe8c2dbcbd1627b10e97e818946bcac72ed10a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ser, P.K.</creatorcontrib><creatorcontrib>Choy, Clifford S.T.</creatorcontrib><creatorcontrib>Siu, W.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ser, P.K.</au><au>Choy, Clifford S.T.</au><au>Siu, W.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Algorithm for the Extraction of Nonanalytic Objects from Multiple Dimensional Parameter Space</atitle><jtitle>Computer vision and image understanding</jtitle><date>1999-01-01</date><risdate>1999</risdate><volume>73</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1077-3142</issn><eissn>1090-235X</eissn><coden>CVIUF4</coden><abstract>A new approach of the Hough transform is proposed, which makes use of the genetic searching algorithm. By using this proposed algorithm, we can resolve the main obstacle of the Hough transform, which demands an enormous amount of storage for the Hough space. The idea of this genetic Hough technique is applicable to the recognition of both analytic and nonanalytic patterns. Based on the analysis of peak formation in the 4D generalized Hough transform's parameter space, a fitness function is derived, which represents the statistical weight of the existence of desired objects. By using the genetic approach to extract peaks in the parameter space, the physical storage for the 4D Hough parameter domain is not required during the detection while the accuracy of the detected parameters can be significantly improved.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/cviu.1998.0695</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-3142 |
ispartof | Computer vision and image understanding, 1999-01, Vol.73 (1), p.1-13 |
issn | 1077-3142 1090-235X |
language | eng |
recordid | cdi_proquest_miscellaneous_26942197 |
source | ScienceDirect Journals |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Pattern recognition. Digital image processing. Computational geometry Theoretical computing |
title | Genetic Algorithm for the Extraction of Nonanalytic Objects from Multiple Dimensional Parameter Space |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Algorithm%20for%20the%20Extraction%20of%20Nonanalytic%20Objects%20from%20Multiple%20Dimensional%20Parameter%20Space&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Ser,%20P.K.&rft.date=1999-01-01&rft.volume=73&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1077-3142&rft.eissn=1090-235X&rft.coden=CVIUF4&rft_id=info:doi/10.1006/cviu.1998.0695&rft_dat=%3Cproquest_cross%3E26942197%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-1fad358d539e71215ee74320bffe8c2dbcbd1627b10e97e818946bcac72ed10a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26942197&rft_id=info:pmid/&rfr_iscdi=true |