Loading…

Genetic Algorithm for the Extraction of Nonanalytic Objects from Multiple Dimensional Parameter Space

A new approach of the Hough transform is proposed, which makes use of the genetic searching algorithm. By using this proposed algorithm, we can resolve the main obstacle of the Hough transform, which demands an enormous amount of storage for the Hough space. The idea of this genetic Hough technique...

Full description

Saved in:
Bibliographic Details
Published in:Computer vision and image understanding 1999-01, Vol.73 (1), p.1-13
Main Authors: Ser, P.K., Choy, Clifford S.T., Siu, W.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c346t-1fad358d539e71215ee74320bffe8c2dbcbd1627b10e97e818946bcac72ed10a3
cites cdi_FETCH-LOGICAL-c346t-1fad358d539e71215ee74320bffe8c2dbcbd1627b10e97e818946bcac72ed10a3
container_end_page 13
container_issue 1
container_start_page 1
container_title Computer vision and image understanding
container_volume 73
creator Ser, P.K.
Choy, Clifford S.T.
Siu, W.C.
description A new approach of the Hough transform is proposed, which makes use of the genetic searching algorithm. By using this proposed algorithm, we can resolve the main obstacle of the Hough transform, which demands an enormous amount of storage for the Hough space. The idea of this genetic Hough technique is applicable to the recognition of both analytic and nonanalytic patterns. Based on the analysis of peak formation in the 4D generalized Hough transform's parameter space, a fitness function is derived, which represents the statistical weight of the existence of desired objects. By using the genetic approach to extract peaks in the parameter space, the physical storage for the 4D Hough parameter domain is not required during the detection while the accuracy of the detected parameters can be significantly improved.
doi_str_mv 10.1006/cviu.1998.0695
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26942197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1077314298906956</els_id><sourcerecordid>26942197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-1fad358d539e71215ee74320bffe8c2dbcbd1627b10e97e818946bcac72ed10a3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhhdR8PPqOQfxtjWT_cyx1FoFtYIK3kI2O9FIdlOTtOi_d5cWPHmaOTzvO8yTJOdAJ0BpeaU2Zj0BzusJLXmxlxwB5TRlWfG2P-5VlWaQs8PkOIRPSgFyDkcJLrDHaBSZ2nfnTfzoiHaexA8k8-_opYrG9cRp8uh62Uv7M7LL5hNVDER715GHtY1mZZFcmw77MODSkifpZYcRPXleSYWnyYGWNuDZbp4krzfzl9lter9c3M2m96nK8jKmoGWbFXVbZBwrYFAgVnnGaKM11oq1jWpaKFnVAEVeYQ01z8tGSVUxbIHK7CS53PauvPtaY4iiM0GhtbJHtw6ClTxnwKsBnGxB5V0IHrVYedNJ_yOAitGmGG2K0aYYbQ6Bi12zDEpa7WWvTPhLlUUOBR-weovh8OXGoBdBGewVtsYPykTrzH8XfgGRZYpy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26942197</pqid></control><display><type>article</type><title>Genetic Algorithm for the Extraction of Nonanalytic Objects from Multiple Dimensional Parameter Space</title><source>ScienceDirect Journals</source><creator>Ser, P.K. ; Choy, Clifford S.T. ; Siu, W.C.</creator><creatorcontrib>Ser, P.K. ; Choy, Clifford S.T. ; Siu, W.C.</creatorcontrib><description>A new approach of the Hough transform is proposed, which makes use of the genetic searching algorithm. By using this proposed algorithm, we can resolve the main obstacle of the Hough transform, which demands an enormous amount of storage for the Hough space. The idea of this genetic Hough technique is applicable to the recognition of both analytic and nonanalytic patterns. Based on the analysis of peak formation in the 4D generalized Hough transform's parameter space, a fitness function is derived, which represents the statistical weight of the existence of desired objects. By using the genetic approach to extract peaks in the parameter space, the physical storage for the 4D Hough parameter domain is not required during the detection while the accuracy of the detected parameters can be significantly improved.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1006/cviu.1998.0695</identifier><identifier>CODEN: CVIUF4</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Pattern recognition. Digital image processing. Computational geometry ; Theoretical computing</subject><ispartof>Computer vision and image understanding, 1999-01, Vol.73 (1), p.1-13</ispartof><rights>1999 Academic Press</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-1fad358d539e71215ee74320bffe8c2dbcbd1627b10e97e818946bcac72ed10a3</citedby><cites>FETCH-LOGICAL-c346t-1fad358d539e71215ee74320bffe8c2dbcbd1627b10e97e818946bcac72ed10a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1654159$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ser, P.K.</creatorcontrib><creatorcontrib>Choy, Clifford S.T.</creatorcontrib><creatorcontrib>Siu, W.C.</creatorcontrib><title>Genetic Algorithm for the Extraction of Nonanalytic Objects from Multiple Dimensional Parameter Space</title><title>Computer vision and image understanding</title><description>A new approach of the Hough transform is proposed, which makes use of the genetic searching algorithm. By using this proposed algorithm, we can resolve the main obstacle of the Hough transform, which demands an enormous amount of storage for the Hough space. The idea of this genetic Hough technique is applicable to the recognition of both analytic and nonanalytic patterns. Based on the analysis of peak formation in the 4D generalized Hough transform's parameter space, a fitness function is derived, which represents the statistical weight of the existence of desired objects. By using the genetic approach to extract peaks in the parameter space, the physical storage for the 4D Hough parameter domain is not required during the detection while the accuracy of the detected parameters can be significantly improved.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Theoretical computing</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhhdR8PPqOQfxtjWT_cyx1FoFtYIK3kI2O9FIdlOTtOi_d5cWPHmaOTzvO8yTJOdAJ0BpeaU2Zj0BzusJLXmxlxwB5TRlWfG2P-5VlWaQs8PkOIRPSgFyDkcJLrDHaBSZ2nfnTfzoiHaexA8k8-_opYrG9cRp8uh62Uv7M7LL5hNVDER715GHtY1mZZFcmw77MODSkifpZYcRPXleSYWnyYGWNuDZbp4krzfzl9lter9c3M2m96nK8jKmoGWbFXVbZBwrYFAgVnnGaKM11oq1jWpaKFnVAEVeYQ01z8tGSVUxbIHK7CS53PauvPtaY4iiM0GhtbJHtw6ClTxnwKsBnGxB5V0IHrVYedNJ_yOAitGmGG2K0aYYbQ6Bi12zDEpa7WWvTPhLlUUOBR-weovh8OXGoBdBGewVtsYPykTrzH8XfgGRZYpy</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Ser, P.K.</creator><creator>Choy, Clifford S.T.</creator><creator>Siu, W.C.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19990101</creationdate><title>Genetic Algorithm for the Extraction of Nonanalytic Objects from Multiple Dimensional Parameter Space</title><author>Ser, P.K. ; Choy, Clifford S.T. ; Siu, W.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-1fad358d539e71215ee74320bffe8c2dbcbd1627b10e97e818946bcac72ed10a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ser, P.K.</creatorcontrib><creatorcontrib>Choy, Clifford S.T.</creatorcontrib><creatorcontrib>Siu, W.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ser, P.K.</au><au>Choy, Clifford S.T.</au><au>Siu, W.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Algorithm for the Extraction of Nonanalytic Objects from Multiple Dimensional Parameter Space</atitle><jtitle>Computer vision and image understanding</jtitle><date>1999-01-01</date><risdate>1999</risdate><volume>73</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1077-3142</issn><eissn>1090-235X</eissn><coden>CVIUF4</coden><abstract>A new approach of the Hough transform is proposed, which makes use of the genetic searching algorithm. By using this proposed algorithm, we can resolve the main obstacle of the Hough transform, which demands an enormous amount of storage for the Hough space. The idea of this genetic Hough technique is applicable to the recognition of both analytic and nonanalytic patterns. Based on the analysis of peak formation in the 4D generalized Hough transform's parameter space, a fitness function is derived, which represents the statistical weight of the existence of desired objects. By using the genetic approach to extract peaks in the parameter space, the physical storage for the 4D Hough parameter domain is not required during the detection while the accuracy of the detected parameters can be significantly improved.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/cviu.1998.0695</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-3142
ispartof Computer vision and image understanding, 1999-01, Vol.73 (1), p.1-13
issn 1077-3142
1090-235X
language eng
recordid cdi_proquest_miscellaneous_26942197
source ScienceDirect Journals
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Pattern recognition. Digital image processing. Computational geometry
Theoretical computing
title Genetic Algorithm for the Extraction of Nonanalytic Objects from Multiple Dimensional Parameter Space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Algorithm%20for%20the%20Extraction%20of%20Nonanalytic%20Objects%20from%20Multiple%20Dimensional%20Parameter%20Space&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Ser,%20P.K.&rft.date=1999-01-01&rft.volume=73&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1077-3142&rft.eissn=1090-235X&rft.coden=CVIUF4&rft_id=info:doi/10.1006/cviu.1998.0695&rft_dat=%3Cproquest_cross%3E26942197%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-1fad358d539e71215ee74320bffe8c2dbcbd1627b10e97e818946bcac72ed10a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26942197&rft_id=info:pmid/&rfr_iscdi=true