Loading…

Coupled Electron Pair-Type Approximations for Tensor Product State Wave Functions

Size extensivity, defined as the correct scaling of energy with system size, is a desirable property for any many-body method. Traditional configuration interaction (CI) methods are not size extensive, hence the error increases as the system gets larger. Coupled electron pair approximation (CEPA) me...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical theory and computation 2022-08, Vol.18 (8), p.4856-4864
Main Authors: Abraham, Vibin, Mayhall, Nicholas J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Size extensivity, defined as the correct scaling of energy with system size, is a desirable property for any many-body method. Traditional configuration interaction (CI) methods are not size extensive, hence the error increases as the system gets larger. Coupled electron pair approximation (CEPA) methods can be constructed as simple extensions of a truncated CI that ensures size extensivity. One of the major issues with the CEPA and its variants is that singularities arise in the amplitude equations when the system starts to be strongly correlated. In this work, we extend the traditional Slater determinant based coupled electron pair approaches like CEPA-0, averaged coupled-pair functional, and average quadratic coupled-cluster to a new formulation based on tensor product states (TPS). We show that a TPS basis can often be chosen such that it removes the singularities that commonly destroy the accuracy of CEPA based methods. A suitable TPS representation can be formed by partitioning the system into separate disjoint clusters and forming the final wave function as the tensor product of the many body states of these clusters. We demonstrate the application of these methods on simple bond breaking systems such as CH4 and F2 where determinant based CEPA methods fail. We further apply the TPS-CEPA approach to stillbene isomerization and few planar π-conjugated systems. Overall, the results show that the TPS-CEPA method can remove the singularities and provide improved numerical results compared to common electronic structure methods.
ISSN:1549-9618
1549-9626
DOI:10.1021/acs.jctc.2c00589