Loading…

Nomograms for prognostic risk assessment in glioblastoma multiforme: Applications and limitations

Glioblastoma multiforme (GBM) is the most common and aggressive form of brain cancer. Prognosis evaluation is of great significance in guiding individualized treatment and monitoring of GBM. By integrating different prognostic variables, nomograms simplify the statistical risk prediction model into...

Full description

Saved in:
Bibliographic Details
Published in:Clinical genetics 2022-11, Vol.102 (5), p.359-368
Main Authors: Zheng, Hong, Yan, Taoning, Han, Yunsong, Wang, Qiang, Zhang, Guosen, Zhang, Lu, Zhu, Wan, Xie, Longxiang, Guo, Xiangqian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3300-c43894c859ab889c63511e1461d5d80ef3e6748057f73d26e11baefb5c67afaa3
cites cdi_FETCH-LOGICAL-c3300-c43894c859ab889c63511e1461d5d80ef3e6748057f73d26e11baefb5c67afaa3
container_end_page 368
container_issue 5
container_start_page 359
container_title Clinical genetics
container_volume 102
creator Zheng, Hong
Yan, Taoning
Han, Yunsong
Wang, Qiang
Zhang, Guosen
Zhang, Lu
Zhu, Wan
Xie, Longxiang
Guo, Xiangqian
description Glioblastoma multiforme (GBM) is the most common and aggressive form of brain cancer. Prognosis evaluation is of great significance in guiding individualized treatment and monitoring of GBM. By integrating different prognostic variables, nomograms simplify the statistical risk prediction model into numerical estimates for death or recurrence, and are hence widely applied in prognosis prediction. In the past two decades, the application of high‐throughput profiling technology and the establishment of TCGA database and other public data deposits have provided opportunities to identify cancer‐related molecules and prognostic biomarkers. As a result, both molecular features and clinical characteristics of cancer have been reported to be the key factors in nomogram model construction. This article comprehensively reviewed 35 studies of GBM nomograms, analyzed the present situation of GBM nomograms, and discussed the role and significance of nomograms in personalized risk assessment and clinical treatment decision‐making. To facilitate the application of nomograms in the prognostic prediction of GBM patients, a website has been established for the online access of nomograms based on the studies of this review, which is called Consensus Nomogram Spectrum for Glioblastoma (CNSgbm) and is accessible through https://bioinfo.henu.edu.cn/nom/NomList.jsp. An overview of prognostic nomograms in GBM. An assessment of prognostic risk factors in GBM. A website for the online access of GBM nomograms.
doi_str_mv 10.1111/cge.14200
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2695282759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2695282759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3300-c43894c859ab889c63511e1461d5d80ef3e6748057f73d26e11baefb5c67afaa3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsHv0HAix62TTb7L95KqVUoetFzyGazS2qyqZldpN_e6HoSnMtj4PeGeQ-ha0oWNM5SdXpBs5SQEzSjjPOEEJKdolkUnnBasHN0AbCPKytzPkPy2TvfBekAtz7gQ_Bd72EwCgcD71gCaACn-wGbHnfW-NpKGLyT2I12MNHj9D1eHQ7WKDkY3wOWfYOtcWaY9kt01koL-upX5-jtYfO6fkx2L9un9WqXKMYISVTGKp6pKueyriquCpZTqmlW0CZvKqJbposyq0hetiVr0kJTWkvd1rkqStlKyebodrobM3yMGgbhDChtrey1H0GkBc_TKo2pI3rzB937MfTxO5GWKaUkQnmk7iZKBQ8QdCsOwTgZjoIS8V22iGWLn7Iju5zYT2P18X9QrLebyfEFQ9GBWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721107595</pqid></control><display><type>article</type><title>Nomograms for prognostic risk assessment in glioblastoma multiforme: Applications and limitations</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zheng, Hong ; Yan, Taoning ; Han, Yunsong ; Wang, Qiang ; Zhang, Guosen ; Zhang, Lu ; Zhu, Wan ; Xie, Longxiang ; Guo, Xiangqian</creator><creatorcontrib>Zheng, Hong ; Yan, Taoning ; Han, Yunsong ; Wang, Qiang ; Zhang, Guosen ; Zhang, Lu ; Zhu, Wan ; Xie, Longxiang ; Guo, Xiangqian</creatorcontrib><description>Glioblastoma multiforme (GBM) is the most common and aggressive form of brain cancer. Prognosis evaluation is of great significance in guiding individualized treatment and monitoring of GBM. By integrating different prognostic variables, nomograms simplify the statistical risk prediction model into numerical estimates for death or recurrence, and are hence widely applied in prognosis prediction. In the past two decades, the application of high‐throughput profiling technology and the establishment of TCGA database and other public data deposits have provided opportunities to identify cancer‐related molecules and prognostic biomarkers. As a result, both molecular features and clinical characteristics of cancer have been reported to be the key factors in nomogram model construction. This article comprehensively reviewed 35 studies of GBM nomograms, analyzed the present situation of GBM nomograms, and discussed the role and significance of nomograms in personalized risk assessment and clinical treatment decision‐making. To facilitate the application of nomograms in the prognostic prediction of GBM patients, a website has been established for the online access of nomograms based on the studies of this review, which is called Consensus Nomogram Spectrum for Glioblastoma (CNSgbm) and is accessible through https://bioinfo.henu.edu.cn/nom/NomList.jsp. An overview of prognostic nomograms in GBM. An assessment of prognostic risk factors in GBM. A website for the online access of GBM nomograms.</description><identifier>ISSN: 0009-9163</identifier><identifier>EISSN: 1399-0004</identifier><identifier>DOI: 10.1111/cge.14200</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Cancer ; Decision making ; gene signature ; Glioblastoma ; Glioblastoma multiforme ; Mathematical models ; nomogram ; Prediction models ; Prognosis ; Risk assessment</subject><ispartof>Clinical genetics, 2022-11, Vol.102 (5), p.359-368</ispartof><rights>2022 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3300-c43894c859ab889c63511e1461d5d80ef3e6748057f73d26e11baefb5c67afaa3</citedby><cites>FETCH-LOGICAL-c3300-c43894c859ab889c63511e1461d5d80ef3e6748057f73d26e11baefb5c67afaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zheng, Hong</creatorcontrib><creatorcontrib>Yan, Taoning</creatorcontrib><creatorcontrib>Han, Yunsong</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Zhang, Guosen</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Zhu, Wan</creatorcontrib><creatorcontrib>Xie, Longxiang</creatorcontrib><creatorcontrib>Guo, Xiangqian</creatorcontrib><title>Nomograms for prognostic risk assessment in glioblastoma multiforme: Applications and limitations</title><title>Clinical genetics</title><description>Glioblastoma multiforme (GBM) is the most common and aggressive form of brain cancer. Prognosis evaluation is of great significance in guiding individualized treatment and monitoring of GBM. By integrating different prognostic variables, nomograms simplify the statistical risk prediction model into numerical estimates for death or recurrence, and are hence widely applied in prognosis prediction. In the past two decades, the application of high‐throughput profiling technology and the establishment of TCGA database and other public data deposits have provided opportunities to identify cancer‐related molecules and prognostic biomarkers. As a result, both molecular features and clinical characteristics of cancer have been reported to be the key factors in nomogram model construction. This article comprehensively reviewed 35 studies of GBM nomograms, analyzed the present situation of GBM nomograms, and discussed the role and significance of nomograms in personalized risk assessment and clinical treatment decision‐making. To facilitate the application of nomograms in the prognostic prediction of GBM patients, a website has been established for the online access of nomograms based on the studies of this review, which is called Consensus Nomogram Spectrum for Glioblastoma (CNSgbm) and is accessible through https://bioinfo.henu.edu.cn/nom/NomList.jsp. An overview of prognostic nomograms in GBM. An assessment of prognostic risk factors in GBM. A website for the online access of GBM nomograms.</description><subject>Cancer</subject><subject>Decision making</subject><subject>gene signature</subject><subject>Glioblastoma</subject><subject>Glioblastoma multiforme</subject><subject>Mathematical models</subject><subject>nomogram</subject><subject>Prediction models</subject><subject>Prognosis</subject><subject>Risk assessment</subject><issn>0009-9163</issn><issn>1399-0004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsHv0HAix62TTb7L95KqVUoetFzyGazS2qyqZldpN_e6HoSnMtj4PeGeQ-ha0oWNM5SdXpBs5SQEzSjjPOEEJKdolkUnnBasHN0AbCPKytzPkPy2TvfBekAtz7gQ_Bd72EwCgcD71gCaACn-wGbHnfW-NpKGLyT2I12MNHj9D1eHQ7WKDkY3wOWfYOtcWaY9kt01koL-upX5-jtYfO6fkx2L9un9WqXKMYISVTGKp6pKueyriquCpZTqmlW0CZvKqJbposyq0hetiVr0kJTWkvd1rkqStlKyebodrobM3yMGgbhDChtrey1H0GkBc_TKo2pI3rzB937MfTxO5GWKaUkQnmk7iZKBQ8QdCsOwTgZjoIS8V22iGWLn7Iju5zYT2P18X9QrLebyfEFQ9GBWQ</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Zheng, Hong</creator><creator>Yan, Taoning</creator><creator>Han, Yunsong</creator><creator>Wang, Qiang</creator><creator>Zhang, Guosen</creator><creator>Zhang, Lu</creator><creator>Zhu, Wan</creator><creator>Xie, Longxiang</creator><creator>Guo, Xiangqian</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>202211</creationdate><title>Nomograms for prognostic risk assessment in glioblastoma multiforme: Applications and limitations</title><author>Zheng, Hong ; Yan, Taoning ; Han, Yunsong ; Wang, Qiang ; Zhang, Guosen ; Zhang, Lu ; Zhu, Wan ; Xie, Longxiang ; Guo, Xiangqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3300-c43894c859ab889c63511e1461d5d80ef3e6748057f73d26e11baefb5c67afaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cancer</topic><topic>Decision making</topic><topic>gene signature</topic><topic>Glioblastoma</topic><topic>Glioblastoma multiforme</topic><topic>Mathematical models</topic><topic>nomogram</topic><topic>Prediction models</topic><topic>Prognosis</topic><topic>Risk assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Hong</creatorcontrib><creatorcontrib>Yan, Taoning</creatorcontrib><creatorcontrib>Han, Yunsong</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Zhang, Guosen</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Zhu, Wan</creatorcontrib><creatorcontrib>Xie, Longxiang</creatorcontrib><creatorcontrib>Guo, Xiangqian</creatorcontrib><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Hong</au><au>Yan, Taoning</au><au>Han, Yunsong</au><au>Wang, Qiang</au><au>Zhang, Guosen</au><au>Zhang, Lu</au><au>Zhu, Wan</au><au>Xie, Longxiang</au><au>Guo, Xiangqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nomograms for prognostic risk assessment in glioblastoma multiforme: Applications and limitations</atitle><jtitle>Clinical genetics</jtitle><date>2022-11</date><risdate>2022</risdate><volume>102</volume><issue>5</issue><spage>359</spage><epage>368</epage><pages>359-368</pages><issn>0009-9163</issn><eissn>1399-0004</eissn><abstract>Glioblastoma multiforme (GBM) is the most common and aggressive form of brain cancer. Prognosis evaluation is of great significance in guiding individualized treatment and monitoring of GBM. By integrating different prognostic variables, nomograms simplify the statistical risk prediction model into numerical estimates for death or recurrence, and are hence widely applied in prognosis prediction. In the past two decades, the application of high‐throughput profiling technology and the establishment of TCGA database and other public data deposits have provided opportunities to identify cancer‐related molecules and prognostic biomarkers. As a result, both molecular features and clinical characteristics of cancer have been reported to be the key factors in nomogram model construction. This article comprehensively reviewed 35 studies of GBM nomograms, analyzed the present situation of GBM nomograms, and discussed the role and significance of nomograms in personalized risk assessment and clinical treatment decision‐making. To facilitate the application of nomograms in the prognostic prediction of GBM patients, a website has been established for the online access of nomograms based on the studies of this review, which is called Consensus Nomogram Spectrum for Glioblastoma (CNSgbm) and is accessible through https://bioinfo.henu.edu.cn/nom/NomList.jsp. An overview of prognostic nomograms in GBM. An assessment of prognostic risk factors in GBM. A website for the online access of GBM nomograms.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cge.14200</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-9163
ispartof Clinical genetics, 2022-11, Vol.102 (5), p.359-368
issn 0009-9163
1399-0004
language eng
recordid cdi_proquest_miscellaneous_2695282759
source Wiley-Blackwell Read & Publish Collection
subjects Cancer
Decision making
gene signature
Glioblastoma
Glioblastoma multiforme
Mathematical models
nomogram
Prediction models
Prognosis
Risk assessment
title Nomograms for prognostic risk assessment in glioblastoma multiforme: Applications and limitations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nomograms%20for%20prognostic%20risk%20assessment%20in%20glioblastoma%20multiforme:%20Applications%20and%20limitations&rft.jtitle=Clinical%20genetics&rft.au=Zheng,%20Hong&rft.date=2022-11&rft.volume=102&rft.issue=5&rft.spage=359&rft.epage=368&rft.pages=359-368&rft.issn=0009-9163&rft.eissn=1399-0004&rft_id=info:doi/10.1111/cge.14200&rft_dat=%3Cproquest_cross%3E2695282759%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3300-c43894c859ab889c63511e1461d5d80ef3e6748057f73d26e11baefb5c67afaa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2721107595&rft_id=info:pmid/&rfr_iscdi=true