Loading…
Bacterial battle against acidity
Abstract The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and oth...
Saved in:
Published in: | FEMS microbiology reviews 2022-11, Vol.46 (6), p.1 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c458t-4b57283f3cfcde3e5f145dd4dee6e181d36e3ce73b735cf0570a42a63d87e7e33 |
---|---|
cites | cdi_FETCH-LOGICAL-c458t-4b57283f3cfcde3e5f145dd4dee6e181d36e3ce73b735cf0570a42a63d87e7e33 |
container_end_page | |
container_issue | 6 |
container_start_page | 1 |
container_title | FEMS microbiology reviews |
container_volume | 46 |
creator | Schwarz, Julia Schumacher, Kilian Brameyer, Sophie Jung, Kirsten |
description | Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
The authors focus on the manifold adaptive responses of neutralophilic Gram-negative proteobacteria and the molecular mechanisms of sensing acid stress. |
doi_str_mv | 10.1093/femsre/fuac037 |
format | article |
fullrecord | <record><control><sourceid>gale_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2696858646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A773694651</galeid><oup_id>10.1093/femsre/fuac037</oup_id><sourcerecordid>A773694651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-4b57283f3cfcde3e5f145dd4dee6e181d36e3ce73b735cf0570a42a63d87e7e33</originalsourceid><addsrcrecordid>eNqFkUlLAzEYhoMoti5Xj1LwoofWZLLOsYpLoSC4nEOafCkps9RJBvTfO9JqVQqSQ0J43vdLeBA6IXhEcE4vPZSxgUvfGoup3EF9wiUbilyK3R_nHjqIcYEx5jnn-6hHeY6FJKSPBlfGJmiCKQYzk1IBAzM3oYppYGxwIb0foT1vigjH6_0QvdzePF_fD6cPd5Pr8XRoGVdpyGZcZop6ar11QIF7wrhzzAEIIIo4KoBakHQmKbcec4kNy4ygTkmQQOkhOl_1Lpv6tYWYdBmihaIwFdRt1JnIheJKMNGhZ3_QRd02Vfc6namMKpYrLjfU3BSgQ-Xr1Bj7WarHUlKRM8FJR422UN1yUAZbV-BDd_8rcPEr0DEJ3tLctDHqydPj1nLb1LHT5PWyCaVp3jXB-lOfXunTa31d4HT9s3ZWgvvGv3xtptft8r-yD4x9ojI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823849857</pqid></control><display><type>article</type><title>Bacterial battle against acidity</title><source>Oxford University Press Open Access</source><creator>Schwarz, Julia ; Schumacher, Kilian ; Brameyer, Sophie ; Jung, Kirsten</creator><creatorcontrib>Schwarz, Julia ; Schumacher, Kilian ; Brameyer, Sophie ; Jung, Kirsten</creatorcontrib><description>Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
The authors focus on the manifold adaptive responses of neutralophilic Gram-negative proteobacteria and the molecular mechanisms of sensing acid stress.</description><identifier>ISSN: 1574-6976</identifier><identifier>ISSN: 0168-6445</identifier><identifier>EISSN: 1574-6976</identifier><identifier>DOI: 10.1093/femsre/fuac037</identifier><identifier>PMID: 35906711</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Acid resistance ; Acidic soils ; Acidification ; Acidity ; Acids ; Adaptation, Physiological ; Ammonia ; Animals ; Bacteria ; Carbon dioxide ; Cell Membrane ; Chemotaxis ; Cytoplasm ; Drug resistance in microorganisms ; E coli ; Gastrointestinal system ; Gastrointestinal tract ; Glutamate ; Gram-negative bacteria ; Gram-positive bacteria ; Homeostasis ; Hydrogen-Ion Concentration ; Lysine ; Membranes ; pH effects ; pH sensors ; Phylogeny ; Polyamines ; Potassium ; Protons ; Salmonella ; Soil bacteria ; Soil microorganisms ; Stomach ; Sulfur ; Vertebrates</subject><ispartof>FEMS microbiology reviews, 2022-11, Vol.46 (6), p.1</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of FEMS. 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press on behalf of FEMS.</rights><rights>COPYRIGHT 2022 Oxford University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-4b57283f3cfcde3e5f145dd4dee6e181d36e3ce73b735cf0570a42a63d87e7e33</citedby><cites>FETCH-LOGICAL-c458t-4b57283f3cfcde3e5f145dd4dee6e181d36e3ce73b735cf0570a42a63d87e7e33</cites><orcidid>0000-0003-0779-6841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/femsre/fuac037$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35906711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwarz, Julia</creatorcontrib><creatorcontrib>Schumacher, Kilian</creatorcontrib><creatorcontrib>Brameyer, Sophie</creatorcontrib><creatorcontrib>Jung, Kirsten</creatorcontrib><title>Bacterial battle against acidity</title><title>FEMS microbiology reviews</title><addtitle>FEMS Microbiol Rev</addtitle><description>Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
The authors focus on the manifold adaptive responses of neutralophilic Gram-negative proteobacteria and the molecular mechanisms of sensing acid stress.</description><subject>Acid resistance</subject><subject>Acidic soils</subject><subject>Acidification</subject><subject>Acidity</subject><subject>Acids</subject><subject>Adaptation, Physiological</subject><subject>Ammonia</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Carbon dioxide</subject><subject>Cell Membrane</subject><subject>Chemotaxis</subject><subject>Cytoplasm</subject><subject>Drug resistance in microorganisms</subject><subject>E coli</subject><subject>Gastrointestinal system</subject><subject>Gastrointestinal tract</subject><subject>Glutamate</subject><subject>Gram-negative bacteria</subject><subject>Gram-positive bacteria</subject><subject>Homeostasis</subject><subject>Hydrogen-Ion Concentration</subject><subject>Lysine</subject><subject>Membranes</subject><subject>pH effects</subject><subject>pH sensors</subject><subject>Phylogeny</subject><subject>Polyamines</subject><subject>Potassium</subject><subject>Protons</subject><subject>Salmonella</subject><subject>Soil bacteria</subject><subject>Soil microorganisms</subject><subject>Stomach</subject><subject>Sulfur</subject><subject>Vertebrates</subject><issn>1574-6976</issn><issn>0168-6445</issn><issn>1574-6976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkUlLAzEYhoMoti5Xj1LwoofWZLLOsYpLoSC4nEOafCkps9RJBvTfO9JqVQqSQ0J43vdLeBA6IXhEcE4vPZSxgUvfGoup3EF9wiUbilyK3R_nHjqIcYEx5jnn-6hHeY6FJKSPBlfGJmiCKQYzk1IBAzM3oYppYGxwIb0foT1vigjH6_0QvdzePF_fD6cPd5Pr8XRoGVdpyGZcZop6ar11QIF7wrhzzAEIIIo4KoBakHQmKbcec4kNy4ygTkmQQOkhOl_1Lpv6tYWYdBmihaIwFdRt1JnIheJKMNGhZ3_QRd02Vfc6namMKpYrLjfU3BSgQ-Xr1Bj7WarHUlKRM8FJR422UN1yUAZbV-BDd_8rcPEr0DEJ3tLctDHqydPj1nLb1LHT5PWyCaVp3jXB-lOfXunTa31d4HT9s3ZWgvvGv3xtptft8r-yD4x9ojI</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Schwarz, Julia</creator><creator>Schumacher, Kilian</creator><creator>Brameyer, Sophie</creator><creator>Jung, Kirsten</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0779-6841</orcidid></search><sort><creationdate>20221101</creationdate><title>Bacterial battle against acidity</title><author>Schwarz, Julia ; Schumacher, Kilian ; Brameyer, Sophie ; Jung, Kirsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-4b57283f3cfcde3e5f145dd4dee6e181d36e3ce73b735cf0570a42a63d87e7e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acid resistance</topic><topic>Acidic soils</topic><topic>Acidification</topic><topic>Acidity</topic><topic>Acids</topic><topic>Adaptation, Physiological</topic><topic>Ammonia</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Carbon dioxide</topic><topic>Cell Membrane</topic><topic>Chemotaxis</topic><topic>Cytoplasm</topic><topic>Drug resistance in microorganisms</topic><topic>E coli</topic><topic>Gastrointestinal system</topic><topic>Gastrointestinal tract</topic><topic>Glutamate</topic><topic>Gram-negative bacteria</topic><topic>Gram-positive bacteria</topic><topic>Homeostasis</topic><topic>Hydrogen-Ion Concentration</topic><topic>Lysine</topic><topic>Membranes</topic><topic>pH effects</topic><topic>pH sensors</topic><topic>Phylogeny</topic><topic>Polyamines</topic><topic>Potassium</topic><topic>Protons</topic><topic>Salmonella</topic><topic>Soil bacteria</topic><topic>Soil microorganisms</topic><topic>Stomach</topic><topic>Sulfur</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwarz, Julia</creatorcontrib><creatorcontrib>Schumacher, Kilian</creatorcontrib><creatorcontrib>Brameyer, Sophie</creatorcontrib><creatorcontrib>Jung, Kirsten</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>FEMS microbiology reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schwarz, Julia</au><au>Schumacher, Kilian</au><au>Brameyer, Sophie</au><au>Jung, Kirsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial battle against acidity</atitle><jtitle>FEMS microbiology reviews</jtitle><addtitle>FEMS Microbiol Rev</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>46</volume><issue>6</issue><spage>1</spage><pages>1-</pages><issn>1574-6976</issn><issn>0168-6445</issn><eissn>1574-6976</eissn><abstract>Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
The authors focus on the manifold adaptive responses of neutralophilic Gram-negative proteobacteria and the molecular mechanisms of sensing acid stress.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35906711</pmid><doi>10.1093/femsre/fuac037</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-0779-6841</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1574-6976 |
ispartof | FEMS microbiology reviews, 2022-11, Vol.46 (6), p.1 |
issn | 1574-6976 0168-6445 1574-6976 |
language | eng |
recordid | cdi_proquest_miscellaneous_2696858646 |
source | Oxford University Press Open Access |
subjects | Acid resistance Acidic soils Acidification Acidity Acids Adaptation, Physiological Ammonia Animals Bacteria Carbon dioxide Cell Membrane Chemotaxis Cytoplasm Drug resistance in microorganisms E coli Gastrointestinal system Gastrointestinal tract Glutamate Gram-negative bacteria Gram-positive bacteria Homeostasis Hydrogen-Ion Concentration Lysine Membranes pH effects pH sensors Phylogeny Polyamines Potassium Protons Salmonella Soil bacteria Soil microorganisms Stomach Sulfur Vertebrates |
title | Bacterial battle against acidity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20battle%20against%20acidity&rft.jtitle=FEMS%20microbiology%20reviews&rft.au=Schwarz,%20Julia&rft.date=2022-11-01&rft.volume=46&rft.issue=6&rft.spage=1&rft.pages=1-&rft.issn=1574-6976&rft.eissn=1574-6976&rft_id=info:doi/10.1093/femsre/fuac037&rft_dat=%3Cgale_TOX%3EA773694651%3C/gale_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-4b57283f3cfcde3e5f145dd4dee6e181d36e3ce73b735cf0570a42a63d87e7e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2823849857&rft_id=info:pmid/35906711&rft_galeid=A773694651&rft_oup_id=10.1093/femsre/fuac037&rfr_iscdi=true |