Loading…

Bacterial battle against acidity

Abstract The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and oth...

Full description

Saved in:
Bibliographic Details
Published in:FEMS microbiology reviews 2022-11, Vol.46 (6), p.1
Main Authors: Schwarz, Julia, Schumacher, Kilian, Brameyer, Sophie, Jung, Kirsten
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c458t-4b57283f3cfcde3e5f145dd4dee6e181d36e3ce73b735cf0570a42a63d87e7e33
cites cdi_FETCH-LOGICAL-c458t-4b57283f3cfcde3e5f145dd4dee6e181d36e3ce73b735cf0570a42a63d87e7e33
container_end_page
container_issue 6
container_start_page 1
container_title FEMS microbiology reviews
container_volume 46
creator Schwarz, Julia
Schumacher, Kilian
Brameyer, Sophie
Jung, Kirsten
description Abstract The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population. The authors focus on the manifold adaptive responses of neutralophilic Gram-negative proteobacteria and the molecular mechanisms of sensing acid stress.
doi_str_mv 10.1093/femsre/fuac037
format article
fullrecord <record><control><sourceid>gale_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2696858646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A773694651</galeid><oup_id>10.1093/femsre/fuac037</oup_id><sourcerecordid>A773694651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-4b57283f3cfcde3e5f145dd4dee6e181d36e3ce73b735cf0570a42a63d87e7e33</originalsourceid><addsrcrecordid>eNqFkUlLAzEYhoMoti5Xj1LwoofWZLLOsYpLoSC4nEOafCkps9RJBvTfO9JqVQqSQ0J43vdLeBA6IXhEcE4vPZSxgUvfGoup3EF9wiUbilyK3R_nHjqIcYEx5jnn-6hHeY6FJKSPBlfGJmiCKQYzk1IBAzM3oYppYGxwIb0foT1vigjH6_0QvdzePF_fD6cPd5Pr8XRoGVdpyGZcZop6ar11QIF7wrhzzAEIIIo4KoBakHQmKbcec4kNy4ygTkmQQOkhOl_1Lpv6tYWYdBmihaIwFdRt1JnIheJKMNGhZ3_QRd02Vfc6namMKpYrLjfU3BSgQ-Xr1Bj7WarHUlKRM8FJR422UN1yUAZbV-BDd_8rcPEr0DEJ3tLctDHqydPj1nLb1LHT5PWyCaVp3jXB-lOfXunTa31d4HT9s3ZWgvvGv3xtptft8r-yD4x9ojI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823849857</pqid></control><display><type>article</type><title>Bacterial battle against acidity</title><source>Oxford University Press Open Access</source><creator>Schwarz, Julia ; Schumacher, Kilian ; Brameyer, Sophie ; Jung, Kirsten</creator><creatorcontrib>Schwarz, Julia ; Schumacher, Kilian ; Brameyer, Sophie ; Jung, Kirsten</creatorcontrib><description>Abstract The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population. The authors focus on the manifold adaptive responses of neutralophilic Gram-negative proteobacteria and the molecular mechanisms of sensing acid stress.</description><identifier>ISSN: 1574-6976</identifier><identifier>ISSN: 0168-6445</identifier><identifier>EISSN: 1574-6976</identifier><identifier>DOI: 10.1093/femsre/fuac037</identifier><identifier>PMID: 35906711</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Acid resistance ; Acidic soils ; Acidification ; Acidity ; Acids ; Adaptation, Physiological ; Ammonia ; Animals ; Bacteria ; Carbon dioxide ; Cell Membrane ; Chemotaxis ; Cytoplasm ; Drug resistance in microorganisms ; E coli ; Gastrointestinal system ; Gastrointestinal tract ; Glutamate ; Gram-negative bacteria ; Gram-positive bacteria ; Homeostasis ; Hydrogen-Ion Concentration ; Lysine ; Membranes ; pH effects ; pH sensors ; Phylogeny ; Polyamines ; Potassium ; Protons ; Salmonella ; Soil bacteria ; Soil microorganisms ; Stomach ; Sulfur ; Vertebrates</subject><ispartof>FEMS microbiology reviews, 2022-11, Vol.46 (6), p.1</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of FEMS. 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press on behalf of FEMS.</rights><rights>COPYRIGHT 2022 Oxford University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-4b57283f3cfcde3e5f145dd4dee6e181d36e3ce73b735cf0570a42a63d87e7e33</citedby><cites>FETCH-LOGICAL-c458t-4b57283f3cfcde3e5f145dd4dee6e181d36e3ce73b735cf0570a42a63d87e7e33</cites><orcidid>0000-0003-0779-6841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/femsre/fuac037$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35906711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwarz, Julia</creatorcontrib><creatorcontrib>Schumacher, Kilian</creatorcontrib><creatorcontrib>Brameyer, Sophie</creatorcontrib><creatorcontrib>Jung, Kirsten</creatorcontrib><title>Bacterial battle against acidity</title><title>FEMS microbiology reviews</title><addtitle>FEMS Microbiol Rev</addtitle><description>Abstract The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population. The authors focus on the manifold adaptive responses of neutralophilic Gram-negative proteobacteria and the molecular mechanisms of sensing acid stress.</description><subject>Acid resistance</subject><subject>Acidic soils</subject><subject>Acidification</subject><subject>Acidity</subject><subject>Acids</subject><subject>Adaptation, Physiological</subject><subject>Ammonia</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Carbon dioxide</subject><subject>Cell Membrane</subject><subject>Chemotaxis</subject><subject>Cytoplasm</subject><subject>Drug resistance in microorganisms</subject><subject>E coli</subject><subject>Gastrointestinal system</subject><subject>Gastrointestinal tract</subject><subject>Glutamate</subject><subject>Gram-negative bacteria</subject><subject>Gram-positive bacteria</subject><subject>Homeostasis</subject><subject>Hydrogen-Ion Concentration</subject><subject>Lysine</subject><subject>Membranes</subject><subject>pH effects</subject><subject>pH sensors</subject><subject>Phylogeny</subject><subject>Polyamines</subject><subject>Potassium</subject><subject>Protons</subject><subject>Salmonella</subject><subject>Soil bacteria</subject><subject>Soil microorganisms</subject><subject>Stomach</subject><subject>Sulfur</subject><subject>Vertebrates</subject><issn>1574-6976</issn><issn>0168-6445</issn><issn>1574-6976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkUlLAzEYhoMoti5Xj1LwoofWZLLOsYpLoSC4nEOafCkps9RJBvTfO9JqVQqSQ0J43vdLeBA6IXhEcE4vPZSxgUvfGoup3EF9wiUbilyK3R_nHjqIcYEx5jnn-6hHeY6FJKSPBlfGJmiCKQYzk1IBAzM3oYppYGxwIb0foT1vigjH6_0QvdzePF_fD6cPd5Pr8XRoGVdpyGZcZop6ar11QIF7wrhzzAEIIIo4KoBakHQmKbcec4kNy4ygTkmQQOkhOl_1Lpv6tYWYdBmihaIwFdRt1JnIheJKMNGhZ3_QRd02Vfc6namMKpYrLjfU3BSgQ-Xr1Bj7WarHUlKRM8FJR422UN1yUAZbV-BDd_8rcPEr0DEJ3tLctDHqydPj1nLb1LHT5PWyCaVp3jXB-lOfXunTa31d4HT9s3ZWgvvGv3xtptft8r-yD4x9ojI</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Schwarz, Julia</creator><creator>Schumacher, Kilian</creator><creator>Brameyer, Sophie</creator><creator>Jung, Kirsten</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0779-6841</orcidid></search><sort><creationdate>20221101</creationdate><title>Bacterial battle against acidity</title><author>Schwarz, Julia ; Schumacher, Kilian ; Brameyer, Sophie ; Jung, Kirsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-4b57283f3cfcde3e5f145dd4dee6e181d36e3ce73b735cf0570a42a63d87e7e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acid resistance</topic><topic>Acidic soils</topic><topic>Acidification</topic><topic>Acidity</topic><topic>Acids</topic><topic>Adaptation, Physiological</topic><topic>Ammonia</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Carbon dioxide</topic><topic>Cell Membrane</topic><topic>Chemotaxis</topic><topic>Cytoplasm</topic><topic>Drug resistance in microorganisms</topic><topic>E coli</topic><topic>Gastrointestinal system</topic><topic>Gastrointestinal tract</topic><topic>Glutamate</topic><topic>Gram-negative bacteria</topic><topic>Gram-positive bacteria</topic><topic>Homeostasis</topic><topic>Hydrogen-Ion Concentration</topic><topic>Lysine</topic><topic>Membranes</topic><topic>pH effects</topic><topic>pH sensors</topic><topic>Phylogeny</topic><topic>Polyamines</topic><topic>Potassium</topic><topic>Protons</topic><topic>Salmonella</topic><topic>Soil bacteria</topic><topic>Soil microorganisms</topic><topic>Stomach</topic><topic>Sulfur</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwarz, Julia</creatorcontrib><creatorcontrib>Schumacher, Kilian</creatorcontrib><creatorcontrib>Brameyer, Sophie</creatorcontrib><creatorcontrib>Jung, Kirsten</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>FEMS microbiology reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schwarz, Julia</au><au>Schumacher, Kilian</au><au>Brameyer, Sophie</au><au>Jung, Kirsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial battle against acidity</atitle><jtitle>FEMS microbiology reviews</jtitle><addtitle>FEMS Microbiol Rev</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>46</volume><issue>6</issue><spage>1</spage><pages>1-</pages><issn>1574-6976</issn><issn>0168-6445</issn><eissn>1574-6976</eissn><abstract>Abstract The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population. The authors focus on the manifold adaptive responses of neutralophilic Gram-negative proteobacteria and the molecular mechanisms of sensing acid stress.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35906711</pmid><doi>10.1093/femsre/fuac037</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-0779-6841</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1574-6976
ispartof FEMS microbiology reviews, 2022-11, Vol.46 (6), p.1
issn 1574-6976
0168-6445
1574-6976
language eng
recordid cdi_proquest_miscellaneous_2696858646
source Oxford University Press Open Access
subjects Acid resistance
Acidic soils
Acidification
Acidity
Acids
Adaptation, Physiological
Ammonia
Animals
Bacteria
Carbon dioxide
Cell Membrane
Chemotaxis
Cytoplasm
Drug resistance in microorganisms
E coli
Gastrointestinal system
Gastrointestinal tract
Glutamate
Gram-negative bacteria
Gram-positive bacteria
Homeostasis
Hydrogen-Ion Concentration
Lysine
Membranes
pH effects
pH sensors
Phylogeny
Polyamines
Potassium
Protons
Salmonella
Soil bacteria
Soil microorganisms
Stomach
Sulfur
Vertebrates
title Bacterial battle against acidity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20battle%20against%20acidity&rft.jtitle=FEMS%20microbiology%20reviews&rft.au=Schwarz,%20Julia&rft.date=2022-11-01&rft.volume=46&rft.issue=6&rft.spage=1&rft.pages=1-&rft.issn=1574-6976&rft.eissn=1574-6976&rft_id=info:doi/10.1093/femsre/fuac037&rft_dat=%3Cgale_TOX%3EA773694651%3C/gale_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-4b57283f3cfcde3e5f145dd4dee6e181d36e3ce73b735cf0570a42a63d87e7e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2823849857&rft_id=info:pmid/35906711&rft_galeid=A773694651&rft_oup_id=10.1093/femsre/fuac037&rfr_iscdi=true