Loading…

Crystallization of Flexible Chains of Tangent Hard Spheres under Full Confinement

We present results from extensive Monte Carlo simulations on the crystallization of athermal polymers under full confinement. Polymers are represented as freely jointed chains of tangent hard spheres of uniform size. Confinement is applied through the presence of flat, parallel, and impenetrable wal...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2022-08, Vol.126 (31), p.5931-5947
Main Authors: Ramos, Pablo Miguel, Herranz, Miguel, Martínez-Fernández, Daniel, Foteinopoulou, Katerina, Laso, Manuel, Karayiannis, Nikos Ch
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present results from extensive Monte Carlo simulations on the crystallization of athermal polymers under full confinement. Polymers are represented as freely jointed chains of tangent hard spheres of uniform size. Confinement is applied through the presence of flat, parallel, and impenetrable walls in all dimensions. We analyze crystallization as the summation of two contributions: one that occurs in the bulk volume of the system (bulk crystallization), and one on the wall surfaces (surface crystallization). Depending on volume fraction initially amorphous (disordered) hard-sphere chain packings transit to the stable crystal phase. The established ordered morphologies consist primarily of hexagonal close-packed (HCP) crystals in the bulk volume and of triangular (TRI) crystals on the surface. As in the case of athermal packings in the bulk (without confinement), a structural competition is observed between the 5-fold local symmetry and the formation of close-packed crystallites. Effectively, the full confinement inside a cube favors the growth of the HCP crystal, as the FCC one is quite incompatible with the imposed spatial constraints. Consequently, we observe the formation of noncompact ordered motifs which grow from the surface to the inner volume of the simulation cell. We further compare the 2D and 3D crystals formed by monomeric hard spheres under the same simulation conditions. Significant differences are observed at low densities that tend to diminish as concentration increases.
ISSN:1520-6106
1520-5207
DOI:10.1021/acs.jpcb.2c03424