Loading…

Hydrothermal Synthesis, Structural Characterization, and Physical Properties of a New Mixed Valence Iron Phosphate, SrFe3(PO4)3

A new mixed valence Fe(II/III) phosphate, SrFe3(PO4)3, has been synthesized hydrothermally and structurally characterized by single-crystal X-ray diffraction, EDAX, magnetic susceptibility, Mössbauer, infrared and diffuse reflectance spectroscopies, DTA, and bond valence sum calculations. The compou...

Full description

Saved in:
Bibliographic Details
Published in:Journal of solid state chemistry 1999-10, Vol.147 (1), p.390-398
Main Authors: Korzenski, Michael B., Kolis, Joseph W., Long, Gary J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new mixed valence Fe(II/III) phosphate, SrFe3(PO4)3, has been synthesized hydrothermally and structurally characterized by single-crystal X-ray diffraction, EDAX, magnetic susceptibility, Mössbauer, infrared and diffuse reflectance spectroscopies, DTA, and bond valence sum calculations. The compound crystallizes in the orthorhombic space group Imma (No. 74) with a=10.452(3), b=13.429(3), c=6.528(2) Å, V=916.3(4) Å3 and Z=4 with R/Rw=0.0207/0.0307. The structure consists of a complex low-dimensional framework constructed of FeO6 octahedra and PO4 tetrahedra that form 2D channels in which the strontium ions are located. The framework contains two simple building blocks: rigid columns of edge-sharing Fe2P2O14 units and zigzag chains of alternating PO4–FeO6–PO4 units, both of which run parallel to the b direction. This linkage forms intersecting channels which run parallel to the a and b axes. The divalent strontium cations reside within these channels and create openings in the ab plane with dimensions of 6.903(4) and 7.469(4) Å, respectively. These openings can easily accommodate both small and large monovalent or divalent cations, as demonstrated by several cation exchange reactions. The Mössbauer spectral parameters are consistent with the structure and reveal the presence of mixed valent octahedral iron(II) and iron(III) sites in the expected two to one ratio. The quadrupole splittings observed for both iron sites are very large as is expected for the very asymmetric coordination environments found for each iron site.
ISSN:0022-4596
1095-726X
DOI:10.1006/jssc.1999.8392