Loading…
Synthetic aperture sonar-the modern method of underwater remote sensing
Synthetic aperture processing-the coherent combination of data from multiple returns-has revolutionized radar imaging over the past 35 years. Sonar is in the early stages of the same revolution. Synthetic aperture sonar (SAS) data can be processed into images with resolution independent of range. Ad...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4/1756 vol.4 |
container_issue | |
container_start_page | 4/1749 |
container_title | |
container_volume | 4 |
creator | Putney, A. Chang, E. Chatham, R. Marx, D. Nelson, M. Warman, L.K. |
description | Synthetic aperture processing-the coherent combination of data from multiple returns-has revolutionized radar imaging over the past 35 years. Sonar is in the early stages of the same revolution. Synthetic aperture sonar (SAS) data can be processed into images with resolution independent of range. Additionally, within diffraction limits, the resolution is frequency independent. Such characteristics make SAS a useful tool for applications such as bottom searching and mapping, mine hunting, or submarine detection, for near ranges (/spl sim/50 m), mid-ranges (several hundreds of meters), and far ranges (several tens of kilometers) respectively. We have SAS-processed data collected by eleven different hardware suites at frequencies ranging from 240 kHz down to 600 Hz; physical array sizes ranging from half a meter to 256 meters; and with range-independent azimuthal resolutions ranging from 2.5 cm at 50 m for the high frequency systems to /spl sim/6 m resolution at 26 km for the lowest frequency system. Our results demonstrate that phase coherence can be maintained in spite of severe vehicle motion, medium fluctuations, and multipath propagation. For instance, we imaged the interior structure of a sunken airplane at 350 m and at 1,000 m with similar cross-range resolution, despite the rays having suffered a bottom bounce on both the transmit and return paths for the 1,000 m range data. The same imaging technology is applicable to cross-track interferometry (for resolving vertical features), bottom penetrating sonar, and wideband waveforms. |
doi_str_mv | 10.1109/AERO.2001.931483 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_26980099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>931483</ieee_id><sourcerecordid>26980099</sourcerecordid><originalsourceid>FETCH-LOGICAL-i135t-18d2a823cd3de2abff8dca814a715757023d9e820b1813c996e3e425a7a2fb183</originalsourceid><addsrcrecordid>eNotkM1LwzAchgMqOOfu4iknb535bJPjGHMKg4Ef4K1kza-u0iY1SZH99wbme3nh4eE9vAjdUbKklOjH1eZ1v2SE0KXmVCh-gW5IpQgvpdbsEs2yIwvO-Oc1WsT4TXKEFKIUM7R9O7l0hNQ12IwQ0hQAR-9MKDLFg7cQHB4gHb3FvsWTy-DXJAg4wOBTlsHFzn3doqvW9BEW_z1HH0-b9_VzsdtvX9arXdFRLlNBlWVGMd5YboGZQ9sq2xhFhamorGRFGLcaFCMHqihvtC6Bg2DSVIa1mfE5ejjvjsH_TBBTPXSxgb43DvwUa1ZqRYjWWbw_ix0A1GPoBhNO9fkf_gfUKlnK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>26980099</pqid></control><display><type>conference_proceeding</type><title>Synthetic aperture sonar-the modern method of underwater remote sensing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Putney, A. ; Chang, E. ; Chatham, R. ; Marx, D. ; Nelson, M. ; Warman, L.K.</creator><creatorcontrib>Putney, A. ; Chang, E. ; Chatham, R. ; Marx, D. ; Nelson, M. ; Warman, L.K.</creatorcontrib><description>Synthetic aperture processing-the coherent combination of data from multiple returns-has revolutionized radar imaging over the past 35 years. Sonar is in the early stages of the same revolution. Synthetic aperture sonar (SAS) data can be processed into images with resolution independent of range. Additionally, within diffraction limits, the resolution is frequency independent. Such characteristics make SAS a useful tool for applications such as bottom searching and mapping, mine hunting, or submarine detection, for near ranges (/spl sim/50 m), mid-ranges (several hundreds of meters), and far ranges (several tens of kilometers) respectively. We have SAS-processed data collected by eleven different hardware suites at frequencies ranging from 240 kHz down to 600 Hz; physical array sizes ranging from half a meter to 256 meters; and with range-independent azimuthal resolutions ranging from 2.5 cm at 50 m for the high frequency systems to /spl sim/6 m resolution at 26 km for the lowest frequency system. Our results demonstrate that phase coherence can be maintained in spite of severe vehicle motion, medium fluctuations, and multipath propagation. For instance, we imaged the interior structure of a sunken airplane at 350 m and at 1,000 m with similar cross-range resolution, despite the rays having suffered a bottom bounce on both the transmit and return paths for the 1,000 m range data. The same imaging technology is applicable to cross-track interferometry (for resolving vertical features), bottom penetrating sonar, and wideband waveforms.</description><identifier>ISSN: 1095-323X</identifier><identifier>ISBN: 0780365992</identifier><identifier>ISBN: 9780780365995</identifier><identifier>DOI: 10.1109/AERO.2001.931483</identifier><language>eng</language><publisher>IEEE</publisher><subject>Airplanes ; Diffraction ; Fluctuations ; Frequency ; Hardware ; Image resolution ; Interferometry ; Radar imaging ; Synthetic aperture sonar ; Underwater vehicles</subject><ispartof>2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542), 2001, Vol.4, p.4/1749-4/1756 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/931483$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,23930,23931,25140,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/931483$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Putney, A.</creatorcontrib><creatorcontrib>Chang, E.</creatorcontrib><creatorcontrib>Chatham, R.</creatorcontrib><creatorcontrib>Marx, D.</creatorcontrib><creatorcontrib>Nelson, M.</creatorcontrib><creatorcontrib>Warman, L.K.</creatorcontrib><title>Synthetic aperture sonar-the modern method of underwater remote sensing</title><title>2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542)</title><addtitle>AERO</addtitle><description>Synthetic aperture processing-the coherent combination of data from multiple returns-has revolutionized radar imaging over the past 35 years. Sonar is in the early stages of the same revolution. Synthetic aperture sonar (SAS) data can be processed into images with resolution independent of range. Additionally, within diffraction limits, the resolution is frequency independent. Such characteristics make SAS a useful tool for applications such as bottom searching and mapping, mine hunting, or submarine detection, for near ranges (/spl sim/50 m), mid-ranges (several hundreds of meters), and far ranges (several tens of kilometers) respectively. We have SAS-processed data collected by eleven different hardware suites at frequencies ranging from 240 kHz down to 600 Hz; physical array sizes ranging from half a meter to 256 meters; and with range-independent azimuthal resolutions ranging from 2.5 cm at 50 m for the high frequency systems to /spl sim/6 m resolution at 26 km for the lowest frequency system. Our results demonstrate that phase coherence can be maintained in spite of severe vehicle motion, medium fluctuations, and multipath propagation. For instance, we imaged the interior structure of a sunken airplane at 350 m and at 1,000 m with similar cross-range resolution, despite the rays having suffered a bottom bounce on both the transmit and return paths for the 1,000 m range data. The same imaging technology is applicable to cross-track interferometry (for resolving vertical features), bottom penetrating sonar, and wideband waveforms.</description><subject>Airplanes</subject><subject>Diffraction</subject><subject>Fluctuations</subject><subject>Frequency</subject><subject>Hardware</subject><subject>Image resolution</subject><subject>Interferometry</subject><subject>Radar imaging</subject><subject>Synthetic aperture sonar</subject><subject>Underwater vehicles</subject><issn>1095-323X</issn><isbn>0780365992</isbn><isbn>9780780365995</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1LwzAchgMqOOfu4iknb535bJPjGHMKg4Ef4K1kza-u0iY1SZH99wbme3nh4eE9vAjdUbKklOjH1eZ1v2SE0KXmVCh-gW5IpQgvpdbsEs2yIwvO-Oc1WsT4TXKEFKIUM7R9O7l0hNQ12IwQ0hQAR-9MKDLFg7cQHB4gHb3FvsWTy-DXJAg4wOBTlsHFzn3doqvW9BEW_z1HH0-b9_VzsdtvX9arXdFRLlNBlWVGMd5YboGZQ9sq2xhFhamorGRFGLcaFCMHqihvtC6Bg2DSVIa1mfE5ejjvjsH_TBBTPXSxgb43DvwUa1ZqRYjWWbw_ix0A1GPoBhNO9fkf_gfUKlnK</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Putney, A.</creator><creator>Chang, E.</creator><creator>Chatham, R.</creator><creator>Marx, D.</creator><creator>Nelson, M.</creator><creator>Warman, L.K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>2001</creationdate><title>Synthetic aperture sonar-the modern method of underwater remote sensing</title><author>Putney, A. ; Chang, E. ; Chatham, R. ; Marx, D. ; Nelson, M. ; Warman, L.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i135t-18d2a823cd3de2abff8dca814a715757023d9e820b1813c996e3e425a7a2fb183</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Airplanes</topic><topic>Diffraction</topic><topic>Fluctuations</topic><topic>Frequency</topic><topic>Hardware</topic><topic>Image resolution</topic><topic>Interferometry</topic><topic>Radar imaging</topic><topic>Synthetic aperture sonar</topic><topic>Underwater vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Putney, A.</creatorcontrib><creatorcontrib>Chang, E.</creatorcontrib><creatorcontrib>Chatham, R.</creatorcontrib><creatorcontrib>Marx, D.</creatorcontrib><creatorcontrib>Nelson, M.</creatorcontrib><creatorcontrib>Warman, L.K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Putney, A.</au><au>Chang, E.</au><au>Chatham, R.</au><au>Marx, D.</au><au>Nelson, M.</au><au>Warman, L.K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Synthetic aperture sonar-the modern method of underwater remote sensing</atitle><btitle>2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542)</btitle><stitle>AERO</stitle><date>2001</date><risdate>2001</risdate><volume>4</volume><spage>4/1749</spage><epage>4/1756 vol.4</epage><pages>4/1749-4/1756 vol.4</pages><issn>1095-323X</issn><isbn>0780365992</isbn><isbn>9780780365995</isbn><abstract>Synthetic aperture processing-the coherent combination of data from multiple returns-has revolutionized radar imaging over the past 35 years. Sonar is in the early stages of the same revolution. Synthetic aperture sonar (SAS) data can be processed into images with resolution independent of range. Additionally, within diffraction limits, the resolution is frequency independent. Such characteristics make SAS a useful tool for applications such as bottom searching and mapping, mine hunting, or submarine detection, for near ranges (/spl sim/50 m), mid-ranges (several hundreds of meters), and far ranges (several tens of kilometers) respectively. We have SAS-processed data collected by eleven different hardware suites at frequencies ranging from 240 kHz down to 600 Hz; physical array sizes ranging from half a meter to 256 meters; and with range-independent azimuthal resolutions ranging from 2.5 cm at 50 m for the high frequency systems to /spl sim/6 m resolution at 26 km for the lowest frequency system. Our results demonstrate that phase coherence can be maintained in spite of severe vehicle motion, medium fluctuations, and multipath propagation. For instance, we imaged the interior structure of a sunken airplane at 350 m and at 1,000 m with similar cross-range resolution, despite the rays having suffered a bottom bounce on both the transmit and return paths for the 1,000 m range data. The same imaging technology is applicable to cross-track interferometry (for resolving vertical features), bottom penetrating sonar, and wideband waveforms.</abstract><pub>IEEE</pub><doi>10.1109/AERO.2001.931483</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1095-323X |
ispartof | 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542), 2001, Vol.4, p.4/1749-4/1756 vol.4 |
issn | 1095-323X |
language | eng |
recordid | cdi_proquest_miscellaneous_26980099 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Airplanes Diffraction Fluctuations Frequency Hardware Image resolution Interferometry Radar imaging Synthetic aperture sonar Underwater vehicles |
title | Synthetic aperture sonar-the modern method of underwater remote sensing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Synthetic%20aperture%20sonar-the%20modern%20method%20of%20underwater%20remote%20sensing&rft.btitle=2001%20IEEE%20Aerospace%20Conference%20Proceedings%20(Cat.%20No.01TH8542)&rft.au=Putney,%20A.&rft.date=2001&rft.volume=4&rft.spage=4/1749&rft.epage=4/1756%20vol.4&rft.pages=4/1749-4/1756%20vol.4&rft.issn=1095-323X&rft.isbn=0780365992&rft.isbn_list=9780780365995&rft_id=info:doi/10.1109/AERO.2001.931483&rft_dat=%3Cproquest_6IE%3E26980099%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i135t-18d2a823cd3de2abff8dca814a715757023d9e820b1813c996e3e425a7a2fb183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26980099&rft_id=info:pmid/&rft_ieee_id=931483&rfr_iscdi=true |