Loading…
The protein phosphatase 2A catalytic subunit StPP2Ac2b is involved in the control of potato tuber sprouting and source–sink balance in tubers and sprouts
Sprouting negatively affects the quality of stored potato tubers. Understanding the molecular mechanisms that control this process is important for the development of potato varieties with desired sprouting characteristics. Serine/threonine protein phosphatase type 2A (PP2A) has been implicated in s...
Saved in:
Published in: | Journal of experimental botany 2022-11, Vol.73 (19), p.6784-6799 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sprouting negatively affects the quality of stored potato tubers. Understanding the molecular mechanisms that control this process is important for the development of potato varieties with desired sprouting characteristics. Serine/threonine protein phosphatase type 2A (PP2A) has been implicated in several developmental programs and stress responses in plants. PP2A comprises a catalytic (PP2Ac), a scaffolding (A), and a regulatory (B) subunit. In cultivated potato, six PP2Ac isoforms were identified, named StPP2Ac1, 2a, 2b, 3, 4, and 5. In this study we evaluated the sprouting behavior of potato tubers overexpressing the catalytic subunit 2b (StPP2Ac2b-OE). The onset of sprouting and initial sprout elongation is significantly delayed in StPP2Ac2b-OE tubers; however, sprout growth is accelerated during the late stages of development, due to a high degree of branching. StPP2Ac2b-OE tubers also exhibit a pronounced loss of apical dominance. These developmental characteristics are accompanied by changes in carbohydrate metabolism and response to gibberellic acid, and a differential balance between abscisic acid, gibberellic acid, cytokinins, and auxin. Overexpression of StPP2Ac2b alters the source–sink balance, increasing the source capacity of the tuber, and the sink strength of the sprout to support its accelerated growth. |
---|---|
ISSN: | 0022-0957 1460-2431 |
DOI: | 10.1093/jxb/erac326 |