Loading…

Melatonin mediated activation of MAP kinase pathway may reduce DNA damage stress in plants: A review

Melatonin is an important biomolecule found in diverse groups of organisms. Under different abiotic stresses, the synthesis of melatonin is markedly increased suggesting pivotal roles of melatonin in plants enduring stresses. Being an endogenous signaling molecule with antioxidant activity, melatoni...

Full description

Saved in:
Bibliographic Details
Published in:BioFactors (Oxford) 2022-09, Vol.48 (5), p.965-971
Main Authors: Maity, Sukhendu, Guchhait, Rajkumar, Pramanick, Kousik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Melatonin is an important biomolecule found in diverse groups of organisms. Under different abiotic stresses, the synthesis of melatonin is markedly increased suggesting pivotal roles of melatonin in plants enduring stresses. Being an endogenous signaling molecule with antioxidant activity, melatonin alters many physiological responses and is found to be involved in regulating DNA damage responses. However, the molecular mechanisms of melatonin in response to DNA damage have not yet been studied. The present review aims to provide insights into the molecular mechanisms of melatonin in response to DNA damage in plants. We propose that the MAP kinase pathway is involved in regulating melatonin dependent response of plants under DNA damage stress. Where melatonin might activate MAPK via H2O2 or Ca2+ dependent pathways. The activated MAPK in turn might phosphorylate and activate SOG1 and repressor type MYBs to mitigate DNA damage under abiotic stress.
ISSN:0951-6433
1872-8081
DOI:10.1002/biof.1882