Loading…
Microstructure and microsegregation in Al-rich Al–Cu–Mg alloys
Microstructure and microsegregation in two directionally solidified Al alloys, Al–3.9Cu–0.9Mg and Al–15Cu–1Mg (in wt%), were investigated for cooling rates between 0.78 and 0.039 K/s. Transverse and longitudinal sections were examined to exhibit dendritic microstructures. Fractions of solids formed...
Saved in:
Published in: | Acta materialia 1999, Vol.47 (2), p.489-500 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Microstructure and microsegregation in two directionally solidified Al alloys, Al–3.9Cu–0.9Mg and Al–15Cu–1Mg (in wt%), were investigated for cooling rates between 0.78 and 0.039
K/s. Transverse and longitudinal sections were examined to exhibit dendritic microstructures. Fractions of solids formed were determined using quantitative image analysis and solute redistribution in the primary phase was determined using area scans. The model employed to calculate microsegregation is based on the Scheil model but including solid-state diffusion, dendrite arm coarsening and undercooling of the dendrite tip and the formation of eutectic. The model-calculated results were found to be in good agreement with the experimentally determined concentration distributions in the primary
α phase and the amounts of phases formed. It was found that the dendrite morphology was best described by a cylindrical arm geometry and that the accuracy of the phase diagram could have a significant influence on the microsegregation predictions. For the alloy with low copper content, two types of embedded droplets were observed. |
---|---|
ISSN: | 1359-6454 1873-2453 |
DOI: | 10.1016/S1359-6454(98)00372-3 |