Loading…

Transformation of monetite to hydroxyapatite in bioactive coatings on titanium

Calcium phosphates have a wide range of pH stability, depending on their Ca/P ratio. Under physiological conditions (pH ≈7), the most stable calcium phosphate is hydroxyapatite, Ca 10(PO 4) 6(OH) 2. Acidic calcium phosphates, like dicalcium phosphate, CaHPO 4 (monetite) and dicalcium phosphate dihyd...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology 2001-03, Vol.137 (2), p.270-276
Main Authors: Prado Da Silva, M.H., Lima, J.H.C., Soares, G.A., Elias, C.N., de Andrade, M.C., Best, S.M., Gibson, I.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c484t-58da8a4eaaaffd33e32245dbf7b0f21eae72d6d7ee2f0d0fe9298b98e743cecc3
cites cdi_FETCH-LOGICAL-c484t-58da8a4eaaaffd33e32245dbf7b0f21eae72d6d7ee2f0d0fe9298b98e743cecc3
container_end_page 276
container_issue 2
container_start_page 270
container_title Surface & coatings technology
container_volume 137
creator Prado Da Silva, M.H.
Lima, J.H.C.
Soares, G.A.
Elias, C.N.
de Andrade, M.C.
Best, S.M.
Gibson, I.R.
description Calcium phosphates have a wide range of pH stability, depending on their Ca/P ratio. Under physiological conditions (pH ≈7), the most stable calcium phosphate is hydroxyapatite, Ca 10(PO 4) 6(OH) 2. Acidic calcium phosphates, like dicalcium phosphate, CaHPO 4 (monetite) and dicalcium phosphate dihydrate, CaHPO 4·2H 2O (brushite), are thermodynamically unstable under pH values greater than 6–7 and undergo transformation into more stable calcium phosphates. It means that, when placed in vivo (pH ≈7), acidic calcium phosphates convert to hydroxyapatite. In the present study, a coating of crystalline monetite oriented along the [112] axis was electrochemically deposited on titanium substrates. This monetite coating was subsequently converted to hydroxyapatite by immersion in alkaline solutions. The result was a crystalline hydroxyapatite coating oriented along the [002] axis. Different alkaline solutions produced the same result. Studying the effect of immersion time on the transformation indicated that 4 h were required to complete the conversion from monetite to hydroxyapatite. The transformation occurred by a dissolution–reprecipitation mechanism, i.e. the monetite coating was continuously dissolved and reprecipitated as hydroxyapatite. This combined electrochemical deposition and chemical conversion process produced hydroxyapatite coatings with satisfactory adhesion to the substrate and a thickness between 10 and 30 μm.
doi_str_mv 10.1016/S0257-8972(00)01125-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27021337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897200011257</els_id><sourcerecordid>27021337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-58da8a4eaaaffd33e32245dbf7b0f21eae72d6d7ee2f0d0fe9298b98e743cecc3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QVgQRA-r-dhtsieR4hcUPVjPYTaZaKS7qcm22H_v9oNePQ3MPO8M8xByzugNo2x0-055KXNVSX5F6TVljJe5PCADpmSVC1HIQzLYI8fkJKVvSimTVTEgr9MIbXIhNtD50GbBZU1osfMdZl3IvlY2ht8VzGHT8W1W-wCm80vMTOib7WfK-lg_hdYvmlNy5GCW8GxXh-Tj8WE6fs4nb08v4_tJbgpVdHmpLCgoEACcs0Kg4Lwobe1kTR1nCCi5HVmJyB211GHFK1VXCmUhDBojhuRyu3cew88CU6cbnwzOZtBiWCTNJeVMCNmD5RY0MaQU0el59A3ElWZUr-3pjT29VqMp1Rt7ep272B2AZGDmekvGp31YVZVQZU_dbSnsf116jDoZj61B6yOaTtvg_7nzBzNnhjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27021337</pqid></control><display><type>article</type><title>Transformation of monetite to hydroxyapatite in bioactive coatings on titanium</title><source>ScienceDirect Journals</source><creator>Prado Da Silva, M.H. ; Lima, J.H.C. ; Soares, G.A. ; Elias, C.N. ; de Andrade, M.C. ; Best, S.M. ; Gibson, I.R.</creator><creatorcontrib>Prado Da Silva, M.H. ; Lima, J.H.C. ; Soares, G.A. ; Elias, C.N. ; de Andrade, M.C. ; Best, S.M. ; Gibson, I.R.</creatorcontrib><description>Calcium phosphates have a wide range of pH stability, depending on their Ca/P ratio. Under physiological conditions (pH ≈7), the most stable calcium phosphate is hydroxyapatite, Ca 10(PO 4) 6(OH) 2. Acidic calcium phosphates, like dicalcium phosphate, CaHPO 4 (monetite) and dicalcium phosphate dihydrate, CaHPO 4·2H 2O (brushite), are thermodynamically unstable under pH values greater than 6–7 and undergo transformation into more stable calcium phosphates. It means that, when placed in vivo (pH ≈7), acidic calcium phosphates convert to hydroxyapatite. In the present study, a coating of crystalline monetite oriented along the [112] axis was electrochemically deposited on titanium substrates. This monetite coating was subsequently converted to hydroxyapatite by immersion in alkaline solutions. The result was a crystalline hydroxyapatite coating oriented along the [002] axis. Different alkaline solutions produced the same result. Studying the effect of immersion time on the transformation indicated that 4 h were required to complete the conversion from monetite to hydroxyapatite. The transformation occurred by a dissolution–reprecipitation mechanism, i.e. the monetite coating was continuously dissolved and reprecipitated as hydroxyapatite. This combined electrochemical deposition and chemical conversion process produced hydroxyapatite coatings with satisfactory adhesion to the substrate and a thickness between 10 and 30 μm.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/S0257-8972(00)01125-7</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Calcium phosphates ; Chemical conversion ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids) ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Phase transitions ; Physics ; Scanning electron microscopy (SEM) ; X-Ray diffraction</subject><ispartof>Surface &amp; coatings technology, 2001-03, Vol.137 (2), p.270-276</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-58da8a4eaaaffd33e32245dbf7b0f21eae72d6d7ee2f0d0fe9298b98e743cecc3</citedby><cites>FETCH-LOGICAL-c484t-58da8a4eaaaffd33e32245dbf7b0f21eae72d6d7ee2f0d0fe9298b98e743cecc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=899385$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Prado Da Silva, M.H.</creatorcontrib><creatorcontrib>Lima, J.H.C.</creatorcontrib><creatorcontrib>Soares, G.A.</creatorcontrib><creatorcontrib>Elias, C.N.</creatorcontrib><creatorcontrib>de Andrade, M.C.</creatorcontrib><creatorcontrib>Best, S.M.</creatorcontrib><creatorcontrib>Gibson, I.R.</creatorcontrib><title>Transformation of monetite to hydroxyapatite in bioactive coatings on titanium</title><title>Surface &amp; coatings technology</title><description>Calcium phosphates have a wide range of pH stability, depending on their Ca/P ratio. Under physiological conditions (pH ≈7), the most stable calcium phosphate is hydroxyapatite, Ca 10(PO 4) 6(OH) 2. Acidic calcium phosphates, like dicalcium phosphate, CaHPO 4 (monetite) and dicalcium phosphate dihydrate, CaHPO 4·2H 2O (brushite), are thermodynamically unstable under pH values greater than 6–7 and undergo transformation into more stable calcium phosphates. It means that, when placed in vivo (pH ≈7), acidic calcium phosphates convert to hydroxyapatite. In the present study, a coating of crystalline monetite oriented along the [112] axis was electrochemically deposited on titanium substrates. This monetite coating was subsequently converted to hydroxyapatite by immersion in alkaline solutions. The result was a crystalline hydroxyapatite coating oriented along the [002] axis. Different alkaline solutions produced the same result. Studying the effect of immersion time on the transformation indicated that 4 h were required to complete the conversion from monetite to hydroxyapatite. The transformation occurred by a dissolution–reprecipitation mechanism, i.e. the monetite coating was continuously dissolved and reprecipitated as hydroxyapatite. This combined electrochemical deposition and chemical conversion process produced hydroxyapatite coatings with satisfactory adhesion to the substrate and a thickness between 10 and 30 μm.</description><subject>Calcium phosphates</subject><subject>Chemical conversion</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Scanning electron microscopy (SEM)</subject><subject>X-Ray diffraction</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QVgQRA-r-dhtsieR4hcUPVjPYTaZaKS7qcm22H_v9oNePQ3MPO8M8xByzugNo2x0-055KXNVSX5F6TVljJe5PCADpmSVC1HIQzLYI8fkJKVvSimTVTEgr9MIbXIhNtD50GbBZU1osfMdZl3IvlY2ht8VzGHT8W1W-wCm80vMTOib7WfK-lg_hdYvmlNy5GCW8GxXh-Tj8WE6fs4nb08v4_tJbgpVdHmpLCgoEACcs0Kg4Lwobe1kTR1nCCi5HVmJyB211GHFK1VXCmUhDBojhuRyu3cew88CU6cbnwzOZtBiWCTNJeVMCNmD5RY0MaQU0el59A3ElWZUr-3pjT29VqMp1Rt7ep272B2AZGDmekvGp31YVZVQZU_dbSnsf116jDoZj61B6yOaTtvg_7nzBzNnhjw</recordid><startdate>20010315</startdate><enddate>20010315</enddate><creator>Prado Da Silva, M.H.</creator><creator>Lima, J.H.C.</creator><creator>Soares, G.A.</creator><creator>Elias, C.N.</creator><creator>de Andrade, M.C.</creator><creator>Best, S.M.</creator><creator>Gibson, I.R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20010315</creationdate><title>Transformation of monetite to hydroxyapatite in bioactive coatings on titanium</title><author>Prado Da Silva, M.H. ; Lima, J.H.C. ; Soares, G.A. ; Elias, C.N. ; de Andrade, M.C. ; Best, S.M. ; Gibson, I.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-58da8a4eaaaffd33e32245dbf7b0f21eae72d6d7ee2f0d0fe9298b98e743cecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Calcium phosphates</topic><topic>Chemical conversion</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Scanning electron microscopy (SEM)</topic><topic>X-Ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prado Da Silva, M.H.</creatorcontrib><creatorcontrib>Lima, J.H.C.</creatorcontrib><creatorcontrib>Soares, G.A.</creatorcontrib><creatorcontrib>Elias, C.N.</creatorcontrib><creatorcontrib>de Andrade, M.C.</creatorcontrib><creatorcontrib>Best, S.M.</creatorcontrib><creatorcontrib>Gibson, I.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prado Da Silva, M.H.</au><au>Lima, J.H.C.</au><au>Soares, G.A.</au><au>Elias, C.N.</au><au>de Andrade, M.C.</au><au>Best, S.M.</au><au>Gibson, I.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transformation of monetite to hydroxyapatite in bioactive coatings on titanium</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2001-03-15</date><risdate>2001</risdate><volume>137</volume><issue>2</issue><spage>270</spage><epage>276</epage><pages>270-276</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>Calcium phosphates have a wide range of pH stability, depending on their Ca/P ratio. Under physiological conditions (pH ≈7), the most stable calcium phosphate is hydroxyapatite, Ca 10(PO 4) 6(OH) 2. Acidic calcium phosphates, like dicalcium phosphate, CaHPO 4 (monetite) and dicalcium phosphate dihydrate, CaHPO 4·2H 2O (brushite), are thermodynamically unstable under pH values greater than 6–7 and undergo transformation into more stable calcium phosphates. It means that, when placed in vivo (pH ≈7), acidic calcium phosphates convert to hydroxyapatite. In the present study, a coating of crystalline monetite oriented along the [112] axis was electrochemically deposited on titanium substrates. This monetite coating was subsequently converted to hydroxyapatite by immersion in alkaline solutions. The result was a crystalline hydroxyapatite coating oriented along the [002] axis. Different alkaline solutions produced the same result. Studying the effect of immersion time on the transformation indicated that 4 h were required to complete the conversion from monetite to hydroxyapatite. The transformation occurred by a dissolution–reprecipitation mechanism, i.e. the monetite coating was continuously dissolved and reprecipitated as hydroxyapatite. This combined electrochemical deposition and chemical conversion process produced hydroxyapatite coatings with satisfactory adhesion to the substrate and a thickness between 10 and 30 μm.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/S0257-8972(00)01125-7</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2001-03, Vol.137 (2), p.270-276
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_27021337
source ScienceDirect Journals
subjects Calcium phosphates
Chemical conversion
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Liquid phase epitaxy
deposition from liquid phases (melts, solutions, and surface layers on liquids)
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Phase transitions
Physics
Scanning electron microscopy (SEM)
X-Ray diffraction
title Transformation of monetite to hydroxyapatite in bioactive coatings on titanium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transformation%20of%20monetite%20to%20hydroxyapatite%20in%20bioactive%20coatings%20on%20titanium&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Prado%20Da%20Silva,%20M.H.&rft.date=2001-03-15&rft.volume=137&rft.issue=2&rft.spage=270&rft.epage=276&rft.pages=270-276&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/S0257-8972(00)01125-7&rft_dat=%3Cproquest_cross%3E27021337%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c484t-58da8a4eaaaffd33e32245dbf7b0f21eae72d6d7ee2f0d0fe9298b98e743cecc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27021337&rft_id=info:pmid/&rfr_iscdi=true