Loading…
CircSHOC2 Knockdown Alleviates High Glucose-Induced Vascular Endothelial Cell Pyroptosis via Targeting miR-145/FOXO1 Axis In Vitro Condition
Emerging evidence indicates that pyroptosis participates in the pathogenic process of vascular endothelial cells in cardiovascular system complications of diabetes. The roles of circular RNAs (circRNAs) in high glucose (HG)-induced vascular endothelial cells are still unclear. Here, our research inv...
Saved in:
Published in: | Molecular biotechnology 2023-03, Vol.65 (3), p.384-393 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Emerging evidence indicates that pyroptosis participates in the pathogenic process of vascular endothelial cells in cardiovascular system complications of diabetes. The roles of circular RNAs (circRNAs) in high glucose (HG)-induced vascular endothelial cells are still unclear. Here, our research investigated the function and mechanism of circRNA circSHOC2 in pyroptosis of vascular endothelial cells. Results indicated that circSHOC2 was up-regulated in HG-induced human umbilical vein endothelial cells (HUVECs). Functionally, cellular assays indicated that circSHOC2 silencing repressed HG-induced HUVECs pyroptosis. Moreover, circSHOC2 targeted miR-145 through miRNA sponge, and FOXO1 functioned as downstream target of miR-145. In conclusion, these findings suggested the potential roles of circSHOC2 on HG-induced vascular endothelial cells in vitro condition, providing new insights for cardiovascular system complications of diabetes. |
---|---|
ISSN: | 1073-6085 1559-0305 |
DOI: | 10.1007/s12033-022-00544-7 |