Loading…

Ethylene hydrogenation on Pt thin films on Ni(1 0 0) surface

From XPS and LEED studies, a layer-by-layer growth of Pt thin films is indicated up to 8 ML coverage on Ni(1 0 0) surface while a (1×1) structure changes to a disordered structure above 2 ML of Pt film thickness. The 1 ML Pt overlayer, as a model (1 0 0) surface of Pt–Ni alloy single crystal, shows...

Full description

Saved in:
Bibliographic Details
Published in:Surface science 2001-03, Vol.474 (1), p.14-20
Main Authors: Egawa, Chikashi, Endo, Satoshi, Iwai, Hidekazu, Oki, Shoichi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:From XPS and LEED studies, a layer-by-layer growth of Pt thin films is indicated up to 8 ML coverage on Ni(1 0 0) surface while a (1×1) structure changes to a disordered structure above 2 ML of Pt film thickness. The 1 ML Pt overlayer, as a model (1 0 0) surface of Pt–Ni alloy single crystal, shows a considerable d-band narrowing probably due to the formation of an interface state with the Ni substrate. This induces weakly adsorbed hydrogen atoms and ethylene molecules and, as a result, the maximum evolution of ethane is observed around 200 K. A wide d-band extending to −6 eV binding energy is developed for Pt 6 ML film characteristic of bulk Pt electronic states, resulting in a similar surface chemistry of ethylene as on Pt(1 1 1) surface.
ISSN:0039-6028
1879-2758
DOI:10.1016/S0039-6028(00)00978-X