Loading…

Liquid-like atoms in dense-packed solid glasses

Revealing the microscopic structural and dynamic pictures of glasses is a long-standing challenge for scientists 1 , 2 . Extensive studies on the structure and relaxation dynamics of glasses have constructed the current classical picture 3 – 5 : glasses consist of some ‘soft zones’ of loosely bound...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials 2022-11, Vol.21 (11), p.1240-1245
Main Authors: Chang, C., Zhang, H. P., Zhao, R., Li, F. C., Luo, P., Li, M. Z., Bai, H. Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-625a522ec18ed33d592612a7b806637801fa5279fdddd7e3ae340bd53f153093
cites cdi_FETCH-LOGICAL-c352t-625a522ec18ed33d592612a7b806637801fa5279fdddd7e3ae340bd53f153093
container_end_page 1245
container_issue 11
container_start_page 1240
container_title Nature materials
container_volume 21
creator Chang, C.
Zhang, H. P.
Zhao, R.
Li, F. C.
Luo, P.
Li, M. Z.
Bai, H. Y.
description Revealing the microscopic structural and dynamic pictures of glasses is a long-standing challenge for scientists 1 , 2 . Extensive studies on the structure and relaxation dynamics of glasses have constructed the current classical picture 3 – 5 : glasses consist of some ‘soft zones’ of loosely bound atoms embedded in a tightly bound atomic matrix. Recent experiments have found an additional fast process in the relaxation spectra 6 – 9 , but the underlying physics of this process remains unclear. Here, combining extensive dynamic experiments and computer simulations, we reveal that this fast relaxation is associated with string-like diffusion of liquid-like atoms, which are inherited from the high-temperature liquids. Even at room temperature, some atoms in dense-packed metallic glasses can diffuse just as easily as they would in liquid states, with an experimentally determined viscosity as low as 10 7  Pa·s. This finding extends our current microscopic picture of glass solids and might help establish the dynamics–property relationship of glasses 4 . The existence of fast dynamics in glass solids at low temperatures is attributed to liquid-like atoms that are inherited from high-temperature liquids and exhibit behaviour similar to that of atoms in liquid states.
doi_str_mv 10.1038/s41563-022-01327-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2702975501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2730480168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-625a522ec18ed33d592612a7b806637801fa5279fdddd7e3ae340bd53f153093</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOCFy_RZLJJdo9S_IKCl95Dupktabe77U6X4r83ugXBg3OZgXne-XgZu5XiQQpVPFIutVFcAHAhFVh-PGMTmVvDc2PE-amWEuCSXRGthQCptZmwx3ncDzHwJm4w84duS1lss4AtId_5aoMho66JIVs1ngjpml3UviG8OeUpW7w8L2ZvfP7x-j57mvNKaThwA9prAKxkgUGpoEswErxdFsIYZQsh69S3ZR1SWFQeVS6WQataaiVKNWX349hd3-0HpIPbRqqwaXyL3UAOrIDSap2enbK7P-i6G_o2HZcoJfK0yxSJgpGq-o6ox9rt-rj1_aeTwn1b6EYLXbLQ_VjojkmkRhEluF1h_zv6H9UXMX1x_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730480168</pqid></control><display><type>article</type><title>Liquid-like atoms in dense-packed solid glasses</title><source>Nature</source><creator>Chang, C. ; Zhang, H. P. ; Zhao, R. ; Li, F. C. ; Luo, P. ; Li, M. Z. ; Bai, H. Y.</creator><creatorcontrib>Chang, C. ; Zhang, H. P. ; Zhao, R. ; Li, F. C. ; Luo, P. ; Li, M. Z. ; Bai, H. Y.</creatorcontrib><description>Revealing the microscopic structural and dynamic pictures of glasses is a long-standing challenge for scientists 1 , 2 . Extensive studies on the structure and relaxation dynamics of glasses have constructed the current classical picture 3 – 5 : glasses consist of some ‘soft zones’ of loosely bound atoms embedded in a tightly bound atomic matrix. Recent experiments have found an additional fast process in the relaxation spectra 6 – 9 , but the underlying physics of this process remains unclear. Here, combining extensive dynamic experiments and computer simulations, we reveal that this fast relaxation is associated with string-like diffusion of liquid-like atoms, which are inherited from the high-temperature liquids. Even at room temperature, some atoms in dense-packed metallic glasses can diffuse just as easily as they would in liquid states, with an experimentally determined viscosity as low as 10 7  Pa·s. This finding extends our current microscopic picture of glass solids and might help establish the dynamics–property relationship of glasses 4 . The existence of fast dynamics in glass solids at low temperatures is attributed to liquid-like atoms that are inherited from high-temperature liquids and exhibit behaviour similar to that of atoms in liquid states.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-022-01327-w</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/218 ; 639/301/119/1002 ; Amorphous materials ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Diffusion rate ; Dynamic structural analysis ; High temperature ; Inheritances ; Letter ; Liquids ; Low temperature ; Materials Science ; Metallic glasses ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Room temperature ; Temperature ; Viscosity</subject><ispartof>Nature materials, 2022-11, Vol.21 (11), p.1240-1245</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-625a522ec18ed33d592612a7b806637801fa5279fdddd7e3ae340bd53f153093</citedby><cites>FETCH-LOGICAL-c352t-625a522ec18ed33d592612a7b806637801fa5279fdddd7e3ae340bd53f153093</cites><orcidid>0000-0001-5101-7177 ; 0000-0001-7882-5959 ; 0000-0003-4280-4990 ; 0000-0001-7687-7624 ; 0000-0001-8383-7735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chang, C.</creatorcontrib><creatorcontrib>Zhang, H. P.</creatorcontrib><creatorcontrib>Zhao, R.</creatorcontrib><creatorcontrib>Li, F. C.</creatorcontrib><creatorcontrib>Luo, P.</creatorcontrib><creatorcontrib>Li, M. Z.</creatorcontrib><creatorcontrib>Bai, H. Y.</creatorcontrib><title>Liquid-like atoms in dense-packed solid glasses</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><description>Revealing the microscopic structural and dynamic pictures of glasses is a long-standing challenge for scientists 1 , 2 . Extensive studies on the structure and relaxation dynamics of glasses have constructed the current classical picture 3 – 5 : glasses consist of some ‘soft zones’ of loosely bound atoms embedded in a tightly bound atomic matrix. Recent experiments have found an additional fast process in the relaxation spectra 6 – 9 , but the underlying physics of this process remains unclear. Here, combining extensive dynamic experiments and computer simulations, we reveal that this fast relaxation is associated with string-like diffusion of liquid-like atoms, which are inherited from the high-temperature liquids. Even at room temperature, some atoms in dense-packed metallic glasses can diffuse just as easily as they would in liquid states, with an experimentally determined viscosity as low as 10 7  Pa·s. This finding extends our current microscopic picture of glass solids and might help establish the dynamics–property relationship of glasses 4 . The existence of fast dynamics in glass solids at low temperatures is attributed to liquid-like atoms that are inherited from high-temperature liquids and exhibit behaviour similar to that of atoms in liquid states.</description><subject>639/301/1023/218</subject><subject>639/301/119/1002</subject><subject>Amorphous materials</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Diffusion rate</subject><subject>Dynamic structural analysis</subject><subject>High temperature</subject><subject>Inheritances</subject><subject>Letter</subject><subject>Liquids</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Metallic glasses</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Room temperature</subject><subject>Temperature</subject><subject>Viscosity</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOCFy_RZLJJdo9S_IKCl95Dupktabe77U6X4r83ugXBg3OZgXne-XgZu5XiQQpVPFIutVFcAHAhFVh-PGMTmVvDc2PE-amWEuCSXRGthQCptZmwx3ncDzHwJm4w84duS1lss4AtId_5aoMho66JIVs1ngjpml3UviG8OeUpW7w8L2ZvfP7x-j57mvNKaThwA9prAKxkgUGpoEswErxdFsIYZQsh69S3ZR1SWFQeVS6WQataaiVKNWX349hd3-0HpIPbRqqwaXyL3UAOrIDSap2enbK7P-i6G_o2HZcoJfK0yxSJgpGq-o6ox9rt-rj1_aeTwn1b6EYLXbLQ_VjojkmkRhEluF1h_zv6H9UXMX1x_A</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Chang, C.</creator><creator>Zhang, H. P.</creator><creator>Zhao, R.</creator><creator>Li, F. C.</creator><creator>Luo, P.</creator><creator>Li, M. Z.</creator><creator>Bai, H. Y.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5101-7177</orcidid><orcidid>https://orcid.org/0000-0001-7882-5959</orcidid><orcidid>https://orcid.org/0000-0003-4280-4990</orcidid><orcidid>https://orcid.org/0000-0001-7687-7624</orcidid><orcidid>https://orcid.org/0000-0001-8383-7735</orcidid></search><sort><creationdate>20221101</creationdate><title>Liquid-like atoms in dense-packed solid glasses</title><author>Chang, C. ; Zhang, H. P. ; Zhao, R. ; Li, F. C. ; Luo, P. ; Li, M. Z. ; Bai, H. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-625a522ec18ed33d592612a7b806637801fa5279fdddd7e3ae340bd53f153093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/301/1023/218</topic><topic>639/301/119/1002</topic><topic>Amorphous materials</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Diffusion rate</topic><topic>Dynamic structural analysis</topic><topic>High temperature</topic><topic>Inheritances</topic><topic>Letter</topic><topic>Liquids</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Metallic glasses</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Room temperature</topic><topic>Temperature</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, C.</creatorcontrib><creatorcontrib>Zhang, H. P.</creatorcontrib><creatorcontrib>Zhao, R.</creatorcontrib><creatorcontrib>Li, F. C.</creatorcontrib><creatorcontrib>Luo, P.</creatorcontrib><creatorcontrib>Li, M. Z.</creatorcontrib><creatorcontrib>Bai, H. Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, C.</au><au>Zhang, H. P.</au><au>Zhao, R.</au><au>Li, F. C.</au><au>Luo, P.</au><au>Li, M. Z.</au><au>Bai, H. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid-like atoms in dense-packed solid glasses</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>21</volume><issue>11</issue><spage>1240</spage><epage>1245</epage><pages>1240-1245</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Revealing the microscopic structural and dynamic pictures of glasses is a long-standing challenge for scientists 1 , 2 . Extensive studies on the structure and relaxation dynamics of glasses have constructed the current classical picture 3 – 5 : glasses consist of some ‘soft zones’ of loosely bound atoms embedded in a tightly bound atomic matrix. Recent experiments have found an additional fast process in the relaxation spectra 6 – 9 , but the underlying physics of this process remains unclear. Here, combining extensive dynamic experiments and computer simulations, we reveal that this fast relaxation is associated with string-like diffusion of liquid-like atoms, which are inherited from the high-temperature liquids. Even at room temperature, some atoms in dense-packed metallic glasses can diffuse just as easily as they would in liquid states, with an experimentally determined viscosity as low as 10 7  Pa·s. This finding extends our current microscopic picture of glass solids and might help establish the dynamics–property relationship of glasses 4 . The existence of fast dynamics in glass solids at low temperatures is attributed to liquid-like atoms that are inherited from high-temperature liquids and exhibit behaviour similar to that of atoms in liquid states.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41563-022-01327-w</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5101-7177</orcidid><orcidid>https://orcid.org/0000-0001-7882-5959</orcidid><orcidid>https://orcid.org/0000-0003-4280-4990</orcidid><orcidid>https://orcid.org/0000-0001-7687-7624</orcidid><orcidid>https://orcid.org/0000-0001-8383-7735</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2022-11, Vol.21 (11), p.1240-1245
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_2702975501
source Nature
subjects 639/301/1023/218
639/301/119/1002
Amorphous materials
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Diffusion rate
Dynamic structural analysis
High temperature
Inheritances
Letter
Liquids
Low temperature
Materials Science
Metallic glasses
Nanotechnology
Optical and Electronic Materials
Physics
Room temperature
Temperature
Viscosity
title Liquid-like atoms in dense-packed solid glasses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A53%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid-like%20atoms%20in%20dense-packed%20solid%20glasses&rft.jtitle=Nature%20materials&rft.au=Chang,%20C.&rft.date=2022-11-01&rft.volume=21&rft.issue=11&rft.spage=1240&rft.epage=1245&rft.pages=1240-1245&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-022-01327-w&rft_dat=%3Cproquest_cross%3E2730480168%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-625a522ec18ed33d592612a7b806637801fa5279fdddd7e3ae340bd53f153093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2730480168&rft_id=info:pmid/&rfr_iscdi=true