Loading…

Pyrido [1,2‑a] Pyrimidinone Mesoionic Compounds Containing Vanillin Moiety: Design, Synthesis, Antibacterial Activity, and Mechanism

Xanthomonas oryzae pv. oryzicola (Xoo) is a plant pathogen responsible for rice bacterial blight disease that remains challenging for prevention and cure. To discover innovative and extremely potent antibacterial agents, vanillin moiety was introduced to develop a series of novel mesoionic derivativ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agricultural and food chemistry 2022-08, Vol.70 (34), p.10443-10452
Main Authors: Liu, Dengyue, Song, Runjiang, Wu, Zengxue, Xing, Zhifu, Hu, Deyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Xanthomonas oryzae pv. oryzicola (Xoo) is a plant pathogen responsible for rice bacterial blight disease that remains challenging for prevention and cure. To discover innovative and extremely potent antibacterial agents, vanillin moiety was introduced to develop a series of novel mesoionic derivatives. Compound 15 demonstrated excellent in vitro antibacterial activity against Xoo, with a 50% effective concentration value (EC50) of 27.5 μg/mL, which was superior to that of the positive control agent thiodiazole copper (97.1 μg/mL) and comparable to that of compound “A11” (17.4 μg/mL). The greenhouse pot experiment also revealed that compound 15 had 38.5% curative and 36.8% protective efficacy against rice bacterial leaf blight in vivo at 100 μg/mL, which was higher than those of thiodiazole copper (31.2 and 32.6%, respectively) and compound “A11” (29.6 and 33.2%, respectively). Compound 15 enhanced the activities of related defense enzymes, increased chlorophyll content, and promoted the resistance of rice to bacterial infection by modulating the photosynthetic pathway. This study provides a basis for the subsequent structural modification and mechanism research of mesoionic derivatives.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.2c01838