Loading…

Fermentation of NaHCO3-treated corn germ meal by Bacillus velezensis CL-4 promotes lignocellulose degradation and nutrient utilization

Sodium bicarbonate pretreatment and solid-state fermentation (SSF) were used to maximize the nutritional value of corn germ meal (CGM) by inoculating it with Bacillus velezensis CL-4 (isolated from chicken cecal contents and capable of degrading lignocellulose). Based on genome sequencing, B. veleze...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2022-09, Vol.106 (18), p.6077-6094
Main Authors: Chen, Long, Chen, Wanying, Zheng, Boyu, Yu, Wei, Zheng, Lin, Qu, Zihui, Yan, Xiaogang, Wei, Bingdong, Zhao, Zijian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sodium bicarbonate pretreatment and solid-state fermentation (SSF) were used to maximize the nutritional value of corn germ meal (CGM) by inoculating it with Bacillus velezensis CL-4 (isolated from chicken cecal contents and capable of degrading lignocellulose). Based on genome sequencing, B. velezensis CL-4 has a 4,063,558 bp ring chromosome and 46.27% GC content. Furthermore, genes associated with degradation of lignocellulose degradation were detected. Pretreatment of CGM (PCGM) with sodium bicarbonate (optimized to 0.06 g/mL) neutralized low pH. Fermented and pretreated CGM (FPCGM) contained more crude protein (CP), soluble protein of trichloroacetic acid (TCA-SP), and total amino acids (aa) than CGM and PCGM. Degradation rates of cellulose and hemicellulose were reduced by 21.33 and 71.35%, respectively, after 48 h fermentation. Based on electron microscopy, FPCGM destroys the surface structure and adds small debris of the CGM substrate, due to lignocellulose breakdown. Furthermore, 2-oxoadipic acid and dimethyl sulfone were the most important metabolites during pretreatment. Concentrations of adenosine, cytidine, guanosine, S -methyl-5’-thioadenosine, and adenine decreased significantly after 48 h fermentation, whereas concentrations of probiotics, enzymes, and fatty acids (including palmitic, 16-hydroxypalmitic, and linoleic acids) were significantly improved after fermentation. In conclusion, the novel pretreatment of CGM provided a proof of concept for using B. velezensis CL-4 to degrade lignocellulose components, improve nutritional characteristics of CGM, and expand CGM lignocellulosic biological feed production. Key points • Sodium bicarbonate (baking soda) can be used as an economical and green additive to pretreat corn germ meal; • Fermentation with B. velezensis degrades the cellulose and hemicellulose component of corn germ meal and improves its feed quality; • As a novel qualified presumption of safety (QPS) strain, B. velezensis should have broad potential applications in food and feed industries.
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-022-12130-7