Loading…

Leveraging Regio- and Stereoselective C(sp3)–H Functionalization of Silyl Ethers to Train a Logistic Regression Classification Model for Predicting Site-Selectivity Bias

The C–H functionalization of silyl ethers via carbene-induced C–H insertion represents an efficient synthetic disconnection strategy. In this work, site- and stereoselective C­(sp3)–H functionalization at α, γ, δ, and even more distal positions to the siloxy group has been achieved using donor/accep...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2022-08, Vol.144 (34), p.15549-15561
Main Authors: Boni, Yannick T., Cammarota, Ryan C., Liao, Kuangbiao, Sigman, Matthew S., Davies, Huw M. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a324t-498e4e562e6cb45cb66f6276fecf70830bd8c23968d42032ddec305ed8e20df13
cites cdi_FETCH-LOGICAL-a324t-498e4e562e6cb45cb66f6276fecf70830bd8c23968d42032ddec305ed8e20df13
container_end_page 15561
container_issue 34
container_start_page 15549
container_title Journal of the American Chemical Society
container_volume 144
creator Boni, Yannick T.
Cammarota, Ryan C.
Liao, Kuangbiao
Sigman, Matthew S.
Davies, Huw M. L.
description The C–H functionalization of silyl ethers via carbene-induced C–H insertion represents an efficient synthetic disconnection strategy. In this work, site- and stereoselective C­(sp3)–H functionalization at α, γ, δ, and even more distal positions to the siloxy group has been achieved using donor/acceptor carbene intermediates. By exploiting the predilections of Rh2(R-TCPTAD)4 and Rh2(S-2-Cl-5-BrTPCP)4 catalysts to target either more electronically activated or more spatially accessible C–H sites, respectively, divergent desired products can be formed with good diastereocontrol and enantiocontrol. Notably, the reaction can also be extended to enable desymmetrization of meso silyl ethers. Leveraging the broad substrate scope examined in this study, we have trained a machine learning classification model using logistic regression to predict the major C–H functionalization site based on intrinsic substrate reactivity and catalyst propensity for overriding it. This model enables prediction of the major product when applying these C–H functionalization methods to a new substrate of interest. Applying this model broadly, we have demonstrated its utility for guiding late-stage functionalization in complex settings and developed an intuitive visualization tool to assist synthetic chemists in such endeavors.
doi_str_mv 10.1021/jacs.2c04383
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2703986170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2703986170</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-498e4e562e6cb45cb66f6276fecf70830bd8c23968d42032ddec305ed8e20df13</originalsourceid><addsrcrecordid>eNptkUtu2zAQhomiQeO43XVdcJkCVcKHRNHLxsgLcJCgTtcCTQ5dGrTokFQAd9U75Bi5VU4SCXbTTVfzwD_fDOZH6DMlJ5QwerpSOp0wTUou-Ts0ohUjRUWZeI9GhBBW1FLwQ3SU0qovSybpB3TIq0ldU0JG6HkGjxDV0rVL_AOWLhRYtQbPM0QICTzo7B4BT4_Thn99-fN0hS-6tu-FVnn3Ww0JDhbPnd96fJ5_QUw4B3wflWuxwrOwdCk7PbAjpDTIp171iXV6N30TDHhsQ8R3EYzr2f0pc5ehmO_Xu7zFZ06lj-jAKp_g0z6O0c-L8_vpVTG7vbyefp8VirMyF-VEQgmVYCD0oqz0QggrWC0saFsTycnCSM34REhTMsKZMaA5qcBIYMRYysfoeMfdxPDQQcrN2iUN3qsWQpcaVhM-kYL2YYy-7aQ6hpQi2GYT3VrFbUNJM9jTDPY0e3t6-Zc9uVuswbyJ__rxb_UwtQpd7N-c_s96BcUgnFE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703986170</pqid></control><display><type>article</type><title>Leveraging Regio- and Stereoselective C(sp3)–H Functionalization of Silyl Ethers to Train a Logistic Regression Classification Model for Predicting Site-Selectivity Bias</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Boni, Yannick T. ; Cammarota, Ryan C. ; Liao, Kuangbiao ; Sigman, Matthew S. ; Davies, Huw M. L.</creator><creatorcontrib>Boni, Yannick T. ; Cammarota, Ryan C. ; Liao, Kuangbiao ; Sigman, Matthew S. ; Davies, Huw M. L.</creatorcontrib><description>The C–H functionalization of silyl ethers via carbene-induced C–H insertion represents an efficient synthetic disconnection strategy. In this work, site- and stereoselective C­(sp3)–H functionalization at α, γ, δ, and even more distal positions to the siloxy group has been achieved using donor/acceptor carbene intermediates. By exploiting the predilections of Rh2(R-TCPTAD)4 and Rh2(S-2-Cl-5-BrTPCP)4 catalysts to target either more electronically activated or more spatially accessible C–H sites, respectively, divergent desired products can be formed with good diastereocontrol and enantiocontrol. Notably, the reaction can also be extended to enable desymmetrization of meso silyl ethers. Leveraging the broad substrate scope examined in this study, we have trained a machine learning classification model using logistic regression to predict the major C–H functionalization site based on intrinsic substrate reactivity and catalyst propensity for overriding it. This model enables prediction of the major product when applying these C–H functionalization methods to a new substrate of interest. Applying this model broadly, we have demonstrated its utility for guiding late-stage functionalization in complex settings and developed an intuitive visualization tool to assist synthetic chemists in such endeavors.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.2c04383</identifier><identifier>PMID: 35977100</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysis ; Ethers ; Logistic Models</subject><ispartof>Journal of the American Chemical Society, 2022-08, Vol.144 (34), p.15549-15561</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-498e4e562e6cb45cb66f6276fecf70830bd8c23968d42032ddec305ed8e20df13</citedby><cites>FETCH-LOGICAL-a324t-498e4e562e6cb45cb66f6276fecf70830bd8c23968d42032ddec305ed8e20df13</cites><orcidid>0000-0001-9089-0569 ; 0000-0002-5040-3997 ; 0000-0002-5746-8830 ; 0000-0001-6254-9398 ; 0000-0002-3089-9534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35977100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boni, Yannick T.</creatorcontrib><creatorcontrib>Cammarota, Ryan C.</creatorcontrib><creatorcontrib>Liao, Kuangbiao</creatorcontrib><creatorcontrib>Sigman, Matthew S.</creatorcontrib><creatorcontrib>Davies, Huw M. L.</creatorcontrib><title>Leveraging Regio- and Stereoselective C(sp3)–H Functionalization of Silyl Ethers to Train a Logistic Regression Classification Model for Predicting Site-Selectivity Bias</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The C–H functionalization of silyl ethers via carbene-induced C–H insertion represents an efficient synthetic disconnection strategy. In this work, site- and stereoselective C­(sp3)–H functionalization at α, γ, δ, and even more distal positions to the siloxy group has been achieved using donor/acceptor carbene intermediates. By exploiting the predilections of Rh2(R-TCPTAD)4 and Rh2(S-2-Cl-5-BrTPCP)4 catalysts to target either more electronically activated or more spatially accessible C–H sites, respectively, divergent desired products can be formed with good diastereocontrol and enantiocontrol. Notably, the reaction can also be extended to enable desymmetrization of meso silyl ethers. Leveraging the broad substrate scope examined in this study, we have trained a machine learning classification model using logistic regression to predict the major C–H functionalization site based on intrinsic substrate reactivity and catalyst propensity for overriding it. This model enables prediction of the major product when applying these C–H functionalization methods to a new substrate of interest. Applying this model broadly, we have demonstrated its utility for guiding late-stage functionalization in complex settings and developed an intuitive visualization tool to assist synthetic chemists in such endeavors.</description><subject>Catalysis</subject><subject>Ethers</subject><subject>Logistic Models</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkUtu2zAQhomiQeO43XVdcJkCVcKHRNHLxsgLcJCgTtcCTQ5dGrTokFQAd9U75Bi5VU4SCXbTTVfzwD_fDOZH6DMlJ5QwerpSOp0wTUou-Ts0ohUjRUWZeI9GhBBW1FLwQ3SU0qovSybpB3TIq0ldU0JG6HkGjxDV0rVL_AOWLhRYtQbPM0QICTzo7B4BT4_Thn99-fN0hS-6tu-FVnn3Ww0JDhbPnd96fJ5_QUw4B3wflWuxwrOwdCk7PbAjpDTIp171iXV6N30TDHhsQ8R3EYzr2f0pc5ehmO_Xu7zFZ06lj-jAKp_g0z6O0c-L8_vpVTG7vbyefp8VirMyF-VEQgmVYCD0oqz0QggrWC0saFsTycnCSM34REhTMsKZMaA5qcBIYMRYysfoeMfdxPDQQcrN2iUN3qsWQpcaVhM-kYL2YYy-7aQ6hpQi2GYT3VrFbUNJM9jTDPY0e3t6-Zc9uVuswbyJ__rxb_UwtQpd7N-c_s96BcUgnFE</recordid><startdate>20220831</startdate><enddate>20220831</enddate><creator>Boni, Yannick T.</creator><creator>Cammarota, Ryan C.</creator><creator>Liao, Kuangbiao</creator><creator>Sigman, Matthew S.</creator><creator>Davies, Huw M. L.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9089-0569</orcidid><orcidid>https://orcid.org/0000-0002-5040-3997</orcidid><orcidid>https://orcid.org/0000-0002-5746-8830</orcidid><orcidid>https://orcid.org/0000-0001-6254-9398</orcidid><orcidid>https://orcid.org/0000-0002-3089-9534</orcidid></search><sort><creationdate>20220831</creationdate><title>Leveraging Regio- and Stereoselective C(sp3)–H Functionalization of Silyl Ethers to Train a Logistic Regression Classification Model for Predicting Site-Selectivity Bias</title><author>Boni, Yannick T. ; Cammarota, Ryan C. ; Liao, Kuangbiao ; Sigman, Matthew S. ; Davies, Huw M. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-498e4e562e6cb45cb66f6276fecf70830bd8c23968d42032ddec305ed8e20df13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysis</topic><topic>Ethers</topic><topic>Logistic Models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boni, Yannick T.</creatorcontrib><creatorcontrib>Cammarota, Ryan C.</creatorcontrib><creatorcontrib>Liao, Kuangbiao</creatorcontrib><creatorcontrib>Sigman, Matthew S.</creatorcontrib><creatorcontrib>Davies, Huw M. L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boni, Yannick T.</au><au>Cammarota, Ryan C.</au><au>Liao, Kuangbiao</au><au>Sigman, Matthew S.</au><au>Davies, Huw M. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging Regio- and Stereoselective C(sp3)–H Functionalization of Silyl Ethers to Train a Logistic Regression Classification Model for Predicting Site-Selectivity Bias</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2022-08-31</date><risdate>2022</risdate><volume>144</volume><issue>34</issue><spage>15549</spage><epage>15561</epage><pages>15549-15561</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>The C–H functionalization of silyl ethers via carbene-induced C–H insertion represents an efficient synthetic disconnection strategy. In this work, site- and stereoselective C­(sp3)–H functionalization at α, γ, δ, and even more distal positions to the siloxy group has been achieved using donor/acceptor carbene intermediates. By exploiting the predilections of Rh2(R-TCPTAD)4 and Rh2(S-2-Cl-5-BrTPCP)4 catalysts to target either more electronically activated or more spatially accessible C–H sites, respectively, divergent desired products can be formed with good diastereocontrol and enantiocontrol. Notably, the reaction can also be extended to enable desymmetrization of meso silyl ethers. Leveraging the broad substrate scope examined in this study, we have trained a machine learning classification model using logistic regression to predict the major C–H functionalization site based on intrinsic substrate reactivity and catalyst propensity for overriding it. This model enables prediction of the major product when applying these C–H functionalization methods to a new substrate of interest. Applying this model broadly, we have demonstrated its utility for guiding late-stage functionalization in complex settings and developed an intuitive visualization tool to assist synthetic chemists in such endeavors.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35977100</pmid><doi>10.1021/jacs.2c04383</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9089-0569</orcidid><orcidid>https://orcid.org/0000-0002-5040-3997</orcidid><orcidid>https://orcid.org/0000-0002-5746-8830</orcidid><orcidid>https://orcid.org/0000-0001-6254-9398</orcidid><orcidid>https://orcid.org/0000-0002-3089-9534</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2022-08, Vol.144 (34), p.15549-15561
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2703986170
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Catalysis
Ethers
Logistic Models
title Leveraging Regio- and Stereoselective C(sp3)–H Functionalization of Silyl Ethers to Train a Logistic Regression Classification Model for Predicting Site-Selectivity Bias
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T15%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20Regio-%20and%20Stereoselective%20C(sp3)%E2%80%93H%20Functionalization%20of%20Silyl%20Ethers%20to%20Train%20a%20Logistic%20Regression%20Classification%20Model%20for%20Predicting%20Site-Selectivity%20Bias&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Boni,%20Yannick%20T.&rft.date=2022-08-31&rft.volume=144&rft.issue=34&rft.spage=15549&rft.epage=15561&rft.pages=15549-15561&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.2c04383&rft_dat=%3Cproquest_cross%3E2703986170%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a324t-498e4e562e6cb45cb66f6276fecf70830bd8c23968d42032ddec305ed8e20df13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2703986170&rft_id=info:pmid/35977100&rfr_iscdi=true