Loading…
Leveraging Regio- and Stereoselective C(sp3)–H Functionalization of Silyl Ethers to Train a Logistic Regression Classification Model for Predicting Site-Selectivity Bias
The C–H functionalization of silyl ethers via carbene-induced C–H insertion represents an efficient synthetic disconnection strategy. In this work, site- and stereoselective C(sp3)–H functionalization at α, γ, δ, and even more distal positions to the siloxy group has been achieved using donor/accep...
Saved in:
Published in: | Journal of the American Chemical Society 2022-08, Vol.144 (34), p.15549-15561 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a324t-498e4e562e6cb45cb66f6276fecf70830bd8c23968d42032ddec305ed8e20df13 |
---|---|
cites | cdi_FETCH-LOGICAL-a324t-498e4e562e6cb45cb66f6276fecf70830bd8c23968d42032ddec305ed8e20df13 |
container_end_page | 15561 |
container_issue | 34 |
container_start_page | 15549 |
container_title | Journal of the American Chemical Society |
container_volume | 144 |
creator | Boni, Yannick T. Cammarota, Ryan C. Liao, Kuangbiao Sigman, Matthew S. Davies, Huw M. L. |
description | The C–H functionalization of silyl ethers via carbene-induced C–H insertion represents an efficient synthetic disconnection strategy. In this work, site- and stereoselective C(sp3)–H functionalization at α, γ, δ, and even more distal positions to the siloxy group has been achieved using donor/acceptor carbene intermediates. By exploiting the predilections of Rh2(R-TCPTAD)4 and Rh2(S-2-Cl-5-BrTPCP)4 catalysts to target either more electronically activated or more spatially accessible C–H sites, respectively, divergent desired products can be formed with good diastereocontrol and enantiocontrol. Notably, the reaction can also be extended to enable desymmetrization of meso silyl ethers. Leveraging the broad substrate scope examined in this study, we have trained a machine learning classification model using logistic regression to predict the major C–H functionalization site based on intrinsic substrate reactivity and catalyst propensity for overriding it. This model enables prediction of the major product when applying these C–H functionalization methods to a new substrate of interest. Applying this model broadly, we have demonstrated its utility for guiding late-stage functionalization in complex settings and developed an intuitive visualization tool to assist synthetic chemists in such endeavors. |
doi_str_mv | 10.1021/jacs.2c04383 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2703986170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2703986170</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-498e4e562e6cb45cb66f6276fecf70830bd8c23968d42032ddec305ed8e20df13</originalsourceid><addsrcrecordid>eNptkUtu2zAQhomiQeO43XVdcJkCVcKHRNHLxsgLcJCgTtcCTQ5dGrTokFQAd9U75Bi5VU4SCXbTTVfzwD_fDOZH6DMlJ5QwerpSOp0wTUou-Ts0ohUjRUWZeI9GhBBW1FLwQ3SU0qovSybpB3TIq0ldU0JG6HkGjxDV0rVL_AOWLhRYtQbPM0QICTzo7B4BT4_Thn99-fN0hS-6tu-FVnn3Ww0JDhbPnd96fJ5_QUw4B3wflWuxwrOwdCk7PbAjpDTIp171iXV6N30TDHhsQ8R3EYzr2f0pc5ehmO_Xu7zFZ06lj-jAKp_g0z6O0c-L8_vpVTG7vbyefp8VirMyF-VEQgmVYCD0oqz0QggrWC0saFsTycnCSM34REhTMsKZMaA5qcBIYMRYysfoeMfdxPDQQcrN2iUN3qsWQpcaVhM-kYL2YYy-7aQ6hpQi2GYT3VrFbUNJM9jTDPY0e3t6-Zc9uVuswbyJ__rxb_UwtQpd7N-c_s96BcUgnFE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703986170</pqid></control><display><type>article</type><title>Leveraging Regio- and Stereoselective C(sp3)–H Functionalization of Silyl Ethers to Train a Logistic Regression Classification Model for Predicting Site-Selectivity Bias</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Boni, Yannick T. ; Cammarota, Ryan C. ; Liao, Kuangbiao ; Sigman, Matthew S. ; Davies, Huw M. L.</creator><creatorcontrib>Boni, Yannick T. ; Cammarota, Ryan C. ; Liao, Kuangbiao ; Sigman, Matthew S. ; Davies, Huw M. L.</creatorcontrib><description>The C–H functionalization of silyl ethers via carbene-induced C–H insertion represents an efficient synthetic disconnection strategy. In this work, site- and stereoselective C(sp3)–H functionalization at α, γ, δ, and even more distal positions to the siloxy group has been achieved using donor/acceptor carbene intermediates. By exploiting the predilections of Rh2(R-TCPTAD)4 and Rh2(S-2-Cl-5-BrTPCP)4 catalysts to target either more electronically activated or more spatially accessible C–H sites, respectively, divergent desired products can be formed with good diastereocontrol and enantiocontrol. Notably, the reaction can also be extended to enable desymmetrization of meso silyl ethers. Leveraging the broad substrate scope examined in this study, we have trained a machine learning classification model using logistic regression to predict the major C–H functionalization site based on intrinsic substrate reactivity and catalyst propensity for overriding it. This model enables prediction of the major product when applying these C–H functionalization methods to a new substrate of interest. Applying this model broadly, we have demonstrated its utility for guiding late-stage functionalization in complex settings and developed an intuitive visualization tool to assist synthetic chemists in such endeavors.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.2c04383</identifier><identifier>PMID: 35977100</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysis ; Ethers ; Logistic Models</subject><ispartof>Journal of the American Chemical Society, 2022-08, Vol.144 (34), p.15549-15561</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-498e4e562e6cb45cb66f6276fecf70830bd8c23968d42032ddec305ed8e20df13</citedby><cites>FETCH-LOGICAL-a324t-498e4e562e6cb45cb66f6276fecf70830bd8c23968d42032ddec305ed8e20df13</cites><orcidid>0000-0001-9089-0569 ; 0000-0002-5040-3997 ; 0000-0002-5746-8830 ; 0000-0001-6254-9398 ; 0000-0002-3089-9534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35977100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boni, Yannick T.</creatorcontrib><creatorcontrib>Cammarota, Ryan C.</creatorcontrib><creatorcontrib>Liao, Kuangbiao</creatorcontrib><creatorcontrib>Sigman, Matthew S.</creatorcontrib><creatorcontrib>Davies, Huw M. L.</creatorcontrib><title>Leveraging Regio- and Stereoselective C(sp3)–H Functionalization of Silyl Ethers to Train a Logistic Regression Classification Model for Predicting Site-Selectivity Bias</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The C–H functionalization of silyl ethers via carbene-induced C–H insertion represents an efficient synthetic disconnection strategy. In this work, site- and stereoselective C(sp3)–H functionalization at α, γ, δ, and even more distal positions to the siloxy group has been achieved using donor/acceptor carbene intermediates. By exploiting the predilections of Rh2(R-TCPTAD)4 and Rh2(S-2-Cl-5-BrTPCP)4 catalysts to target either more electronically activated or more spatially accessible C–H sites, respectively, divergent desired products can be formed with good diastereocontrol and enantiocontrol. Notably, the reaction can also be extended to enable desymmetrization of meso silyl ethers. Leveraging the broad substrate scope examined in this study, we have trained a machine learning classification model using logistic regression to predict the major C–H functionalization site based on intrinsic substrate reactivity and catalyst propensity for overriding it. This model enables prediction of the major product when applying these C–H functionalization methods to a new substrate of interest. Applying this model broadly, we have demonstrated its utility for guiding late-stage functionalization in complex settings and developed an intuitive visualization tool to assist synthetic chemists in such endeavors.</description><subject>Catalysis</subject><subject>Ethers</subject><subject>Logistic Models</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkUtu2zAQhomiQeO43XVdcJkCVcKHRNHLxsgLcJCgTtcCTQ5dGrTokFQAd9U75Bi5VU4SCXbTTVfzwD_fDOZH6DMlJ5QwerpSOp0wTUou-Ts0ohUjRUWZeI9GhBBW1FLwQ3SU0qovSybpB3TIq0ldU0JG6HkGjxDV0rVL_AOWLhRYtQbPM0QICTzo7B4BT4_Thn99-fN0hS-6tu-FVnn3Ww0JDhbPnd96fJ5_QUw4B3wflWuxwrOwdCk7PbAjpDTIp171iXV6N30TDHhsQ8R3EYzr2f0pc5ehmO_Xu7zFZ06lj-jAKp_g0z6O0c-L8_vpVTG7vbyefp8VirMyF-VEQgmVYCD0oqz0QggrWC0saFsTycnCSM34REhTMsKZMaA5qcBIYMRYysfoeMfdxPDQQcrN2iUN3qsWQpcaVhM-kYL2YYy-7aQ6hpQi2GYT3VrFbUNJM9jTDPY0e3t6-Zc9uVuswbyJ__rxb_UwtQpd7N-c_s96BcUgnFE</recordid><startdate>20220831</startdate><enddate>20220831</enddate><creator>Boni, Yannick T.</creator><creator>Cammarota, Ryan C.</creator><creator>Liao, Kuangbiao</creator><creator>Sigman, Matthew S.</creator><creator>Davies, Huw M. L.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9089-0569</orcidid><orcidid>https://orcid.org/0000-0002-5040-3997</orcidid><orcidid>https://orcid.org/0000-0002-5746-8830</orcidid><orcidid>https://orcid.org/0000-0001-6254-9398</orcidid><orcidid>https://orcid.org/0000-0002-3089-9534</orcidid></search><sort><creationdate>20220831</creationdate><title>Leveraging Regio- and Stereoselective C(sp3)–H Functionalization of Silyl Ethers to Train a Logistic Regression Classification Model for Predicting Site-Selectivity Bias</title><author>Boni, Yannick T. ; Cammarota, Ryan C. ; Liao, Kuangbiao ; Sigman, Matthew S. ; Davies, Huw M. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-498e4e562e6cb45cb66f6276fecf70830bd8c23968d42032ddec305ed8e20df13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysis</topic><topic>Ethers</topic><topic>Logistic Models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boni, Yannick T.</creatorcontrib><creatorcontrib>Cammarota, Ryan C.</creatorcontrib><creatorcontrib>Liao, Kuangbiao</creatorcontrib><creatorcontrib>Sigman, Matthew S.</creatorcontrib><creatorcontrib>Davies, Huw M. L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boni, Yannick T.</au><au>Cammarota, Ryan C.</au><au>Liao, Kuangbiao</au><au>Sigman, Matthew S.</au><au>Davies, Huw M. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging Regio- and Stereoselective C(sp3)–H Functionalization of Silyl Ethers to Train a Logistic Regression Classification Model for Predicting Site-Selectivity Bias</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2022-08-31</date><risdate>2022</risdate><volume>144</volume><issue>34</issue><spage>15549</spage><epage>15561</epage><pages>15549-15561</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>The C–H functionalization of silyl ethers via carbene-induced C–H insertion represents an efficient synthetic disconnection strategy. In this work, site- and stereoselective C(sp3)–H functionalization at α, γ, δ, and even more distal positions to the siloxy group has been achieved using donor/acceptor carbene intermediates. By exploiting the predilections of Rh2(R-TCPTAD)4 and Rh2(S-2-Cl-5-BrTPCP)4 catalysts to target either more electronically activated or more spatially accessible C–H sites, respectively, divergent desired products can be formed with good diastereocontrol and enantiocontrol. Notably, the reaction can also be extended to enable desymmetrization of meso silyl ethers. Leveraging the broad substrate scope examined in this study, we have trained a machine learning classification model using logistic regression to predict the major C–H functionalization site based on intrinsic substrate reactivity and catalyst propensity for overriding it. This model enables prediction of the major product when applying these C–H functionalization methods to a new substrate of interest. Applying this model broadly, we have demonstrated its utility for guiding late-stage functionalization in complex settings and developed an intuitive visualization tool to assist synthetic chemists in such endeavors.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35977100</pmid><doi>10.1021/jacs.2c04383</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9089-0569</orcidid><orcidid>https://orcid.org/0000-0002-5040-3997</orcidid><orcidid>https://orcid.org/0000-0002-5746-8830</orcidid><orcidid>https://orcid.org/0000-0001-6254-9398</orcidid><orcidid>https://orcid.org/0000-0002-3089-9534</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2022-08, Vol.144 (34), p.15549-15561 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_2703986170 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Catalysis Ethers Logistic Models |
title | Leveraging Regio- and Stereoselective C(sp3)–H Functionalization of Silyl Ethers to Train a Logistic Regression Classification Model for Predicting Site-Selectivity Bias |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T15%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20Regio-%20and%20Stereoselective%20C(sp3)%E2%80%93H%20Functionalization%20of%20Silyl%20Ethers%20to%20Train%20a%20Logistic%20Regression%20Classification%20Model%20for%20Predicting%20Site-Selectivity%20Bias&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Boni,%20Yannick%20T.&rft.date=2022-08-31&rft.volume=144&rft.issue=34&rft.spage=15549&rft.epage=15561&rft.pages=15549-15561&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.2c04383&rft_dat=%3Cproquest_cross%3E2703986170%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a324t-498e4e562e6cb45cb66f6276fecf70830bd8c23968d42032ddec305ed8e20df13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2703986170&rft_id=info:pmid/35977100&rfr_iscdi=true |