Loading…

Selecting an Optimal Faraday Cage To Minimize Noise in Electrochemical Experiments

The ubiquitous Faraday cage, an experimental component particularly essential for nanoelectrochemical measurements, is responsible for neutralizing noise introduced by electromagnetic interference (EMI). Faraday cage designs abound in the literature, often exhibiting varying thicknesses, mesh sizes,...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2022-09, Vol.94 (35), p.11983-11989
Main Authors: Glasscott, Matthew W., Brown, Eric W., Dorsey, Keirstin, Laber, Charles H., Conley, Keith, Ray, Jason D., Moores, Lee C., Netchaev, Anton
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a353t-57eb69aac091f07b18c59a8a66c2b04de0f1ad2242c88bcf4672c9885819f4b73
cites cdi_FETCH-LOGICAL-a353t-57eb69aac091f07b18c59a8a66c2b04de0f1ad2242c88bcf4672c9885819f4b73
container_end_page 11989
container_issue 35
container_start_page 11983
container_title Analytical chemistry (Washington)
container_volume 94
creator Glasscott, Matthew W.
Brown, Eric W.
Dorsey, Keirstin
Laber, Charles H.
Conley, Keith
Ray, Jason D.
Moores, Lee C.
Netchaev, Anton
description The ubiquitous Faraday cage, an experimental component particularly essential for nanoelectrochemical measurements, is responsible for neutralizing noise introduced by electromagnetic interference (EMI). Faraday cage designs abound in the literature, often exhibiting varying thicknesses, mesh sizes, and base materials. The fact that the Faraday cage composition most often goes unreported underscores the fact that many electrochemical researchers assume a 100% EMI reduction for any given design. In this work, this assumption is challenged from a theoretical and empirical perspective by highlighting the physical principles producing the Faraday effect. A brief history of the Faraday cage and a simplified theoretical approach introduce fundamental considerations regarding optimal design properties. In practice, time-domain noise profiles and corresponding Fourier transform frequency domain information for custom-built Faraday cages reveal that maximally conductive cages provide more optimal EMI exclusion.
doi_str_mv 10.1021/acs.analchem.2c02347
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2705398939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705398939</sourcerecordid><originalsourceid>FETCH-LOGICAL-a353t-57eb69aac091f07b18c59a8a66c2b04de0f1ad2242c88bcf4672c9885819f4b73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQQIMoWKv_wEPAi5etk2Q_kqOUVoVqQet5mU2zNWW_TLZg_fVmqXrw4CmHeW_CPEIuGUwYcHaD2k-wwUq_mXrCNXARZ0dkxBIOUSolPyYjABARzwBOyZn3WwDGgKUj8vxiKqN722woNnTZ9bbGis7R4Rr3dIobQ1ctfbSNre2noU-t9Ybahs4Gy7XDj1YHY_bRGWdr0_T-nJyUWHlz8f2Oyet8tpreR4vl3cP0dhGhSEQfJZkpUoWoQbESsoJJnSiUmKaaFxCvDZQM15zHXEtZ6DJOM66VlIlkqoyLTIzJ9WFv59r3nfF9XluvTVVhY9qdz8O1iVBSCRXQqz_ott25UGygWKyE5GkaqPhAadd670yZd-EkdPucQT6EzkPo_Cd0_h06aHDQhunv3n-VL1MPg_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714938266</pqid></control><display><type>article</type><title>Selecting an Optimal Faraday Cage To Minimize Noise in Electrochemical Experiments</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Glasscott, Matthew W. ; Brown, Eric W. ; Dorsey, Keirstin ; Laber, Charles H. ; Conley, Keith ; Ray, Jason D. ; Moores, Lee C. ; Netchaev, Anton</creator><creatorcontrib>Glasscott, Matthew W. ; Brown, Eric W. ; Dorsey, Keirstin ; Laber, Charles H. ; Conley, Keith ; Ray, Jason D. ; Moores, Lee C. ; Netchaev, Anton</creatorcontrib><description>The ubiquitous Faraday cage, an experimental component particularly essential for nanoelectrochemical measurements, is responsible for neutralizing noise introduced by electromagnetic interference (EMI). Faraday cage designs abound in the literature, often exhibiting varying thicknesses, mesh sizes, and base materials. The fact that the Faraday cage composition most often goes unreported underscores the fact that many electrochemical researchers assume a 100% EMI reduction for any given design. In this work, this assumption is challenged from a theoretical and empirical perspective by highlighting the physical principles producing the Faraday effect. A brief history of the Faraday cage and a simplified theoretical approach introduce fundamental considerations regarding optimal design properties. In practice, time-domain noise profiles and corresponding Fourier transform frequency domain information for custom-built Faraday cages reveal that maximally conductive cages provide more optimal EMI exclusion.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c02347</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Analytical chemistry ; Cages ; Chemistry ; Electrochemistry ; Electromagnetic interference ; Faraday cage ; Faraday effect ; Fourier transforms ; Noise</subject><ispartof>Analytical chemistry (Washington), 2022-09, Vol.94 (35), p.11983-11989</ispartof><rights>Not subject to U.S. Copyright. Published 2022 by American Chemical Society</rights><rights>Copyright American Chemical Society Sep 6, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a353t-57eb69aac091f07b18c59a8a66c2b04de0f1ad2242c88bcf4672c9885819f4b73</citedby><cites>FETCH-LOGICAL-a353t-57eb69aac091f07b18c59a8a66c2b04de0f1ad2242c88bcf4672c9885819f4b73</cites><orcidid>0000-0001-5743-7738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Glasscott, Matthew W.</creatorcontrib><creatorcontrib>Brown, Eric W.</creatorcontrib><creatorcontrib>Dorsey, Keirstin</creatorcontrib><creatorcontrib>Laber, Charles H.</creatorcontrib><creatorcontrib>Conley, Keith</creatorcontrib><creatorcontrib>Ray, Jason D.</creatorcontrib><creatorcontrib>Moores, Lee C.</creatorcontrib><creatorcontrib>Netchaev, Anton</creatorcontrib><title>Selecting an Optimal Faraday Cage To Minimize Noise in Electrochemical Experiments</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The ubiquitous Faraday cage, an experimental component particularly essential for nanoelectrochemical measurements, is responsible for neutralizing noise introduced by electromagnetic interference (EMI). Faraday cage designs abound in the literature, often exhibiting varying thicknesses, mesh sizes, and base materials. The fact that the Faraday cage composition most often goes unreported underscores the fact that many electrochemical researchers assume a 100% EMI reduction for any given design. In this work, this assumption is challenged from a theoretical and empirical perspective by highlighting the physical principles producing the Faraday effect. A brief history of the Faraday cage and a simplified theoretical approach introduce fundamental considerations regarding optimal design properties. In practice, time-domain noise profiles and corresponding Fourier transform frequency domain information for custom-built Faraday cages reveal that maximally conductive cages provide more optimal EMI exclusion.</description><subject>Analytical chemistry</subject><subject>Cages</subject><subject>Chemistry</subject><subject>Electrochemistry</subject><subject>Electromagnetic interference</subject><subject>Faraday cage</subject><subject>Faraday effect</subject><subject>Fourier transforms</subject><subject>Noise</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQQIMoWKv_wEPAi5etk2Q_kqOUVoVqQet5mU2zNWW_TLZg_fVmqXrw4CmHeW_CPEIuGUwYcHaD2k-wwUq_mXrCNXARZ0dkxBIOUSolPyYjABARzwBOyZn3WwDGgKUj8vxiKqN722woNnTZ9bbGis7R4Rr3dIobQ1ctfbSNre2noU-t9Ybahs4Gy7XDj1YHY_bRGWdr0_T-nJyUWHlz8f2Oyet8tpreR4vl3cP0dhGhSEQfJZkpUoWoQbESsoJJnSiUmKaaFxCvDZQM15zHXEtZ6DJOM66VlIlkqoyLTIzJ9WFv59r3nfF9XluvTVVhY9qdz8O1iVBSCRXQqz_ott25UGygWKyE5GkaqPhAadd670yZd-EkdPucQT6EzkPo_Cd0_h06aHDQhunv3n-VL1MPg_A</recordid><startdate>20220906</startdate><enddate>20220906</enddate><creator>Glasscott, Matthew W.</creator><creator>Brown, Eric W.</creator><creator>Dorsey, Keirstin</creator><creator>Laber, Charles H.</creator><creator>Conley, Keith</creator><creator>Ray, Jason D.</creator><creator>Moores, Lee C.</creator><creator>Netchaev, Anton</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5743-7738</orcidid></search><sort><creationdate>20220906</creationdate><title>Selecting an Optimal Faraday Cage To Minimize Noise in Electrochemical Experiments</title><author>Glasscott, Matthew W. ; Brown, Eric W. ; Dorsey, Keirstin ; Laber, Charles H. ; Conley, Keith ; Ray, Jason D. ; Moores, Lee C. ; Netchaev, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a353t-57eb69aac091f07b18c59a8a66c2b04de0f1ad2242c88bcf4672c9885819f4b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical chemistry</topic><topic>Cages</topic><topic>Chemistry</topic><topic>Electrochemistry</topic><topic>Electromagnetic interference</topic><topic>Faraday cage</topic><topic>Faraday effect</topic><topic>Fourier transforms</topic><topic>Noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glasscott, Matthew W.</creatorcontrib><creatorcontrib>Brown, Eric W.</creatorcontrib><creatorcontrib>Dorsey, Keirstin</creatorcontrib><creatorcontrib>Laber, Charles H.</creatorcontrib><creatorcontrib>Conley, Keith</creatorcontrib><creatorcontrib>Ray, Jason D.</creatorcontrib><creatorcontrib>Moores, Lee C.</creatorcontrib><creatorcontrib>Netchaev, Anton</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glasscott, Matthew W.</au><au>Brown, Eric W.</au><au>Dorsey, Keirstin</au><au>Laber, Charles H.</au><au>Conley, Keith</au><au>Ray, Jason D.</au><au>Moores, Lee C.</au><au>Netchaev, Anton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selecting an Optimal Faraday Cage To Minimize Noise in Electrochemical Experiments</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-09-06</date><risdate>2022</risdate><volume>94</volume><issue>35</issue><spage>11983</spage><epage>11989</epage><pages>11983-11989</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>The ubiquitous Faraday cage, an experimental component particularly essential for nanoelectrochemical measurements, is responsible for neutralizing noise introduced by electromagnetic interference (EMI). Faraday cage designs abound in the literature, often exhibiting varying thicknesses, mesh sizes, and base materials. The fact that the Faraday cage composition most often goes unreported underscores the fact that many electrochemical researchers assume a 100% EMI reduction for any given design. In this work, this assumption is challenged from a theoretical and empirical perspective by highlighting the physical principles producing the Faraday effect. A brief history of the Faraday cage and a simplified theoretical approach introduce fundamental considerations regarding optimal design properties. In practice, time-domain noise profiles and corresponding Fourier transform frequency domain information for custom-built Faraday cages reveal that maximally conductive cages provide more optimal EMI exclusion.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.2c02347</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5743-7738</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2022-09, Vol.94 (35), p.11983-11989
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2705398939
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Analytical chemistry
Cages
Chemistry
Electrochemistry
Electromagnetic interference
Faraday cage
Faraday effect
Fourier transforms
Noise
title Selecting an Optimal Faraday Cage To Minimize Noise in Electrochemical Experiments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selecting%20an%20Optimal%20Faraday%20Cage%20To%20Minimize%20Noise%20in%20Electrochemical%20Experiments&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Glasscott,%20Matthew%20W.&rft.date=2022-09-06&rft.volume=94&rft.issue=35&rft.spage=11983&rft.epage=11989&rft.pages=11983-11989&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c02347&rft_dat=%3Cproquest_cross%3E2705398939%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a353t-57eb69aac091f07b18c59a8a66c2b04de0f1ad2242c88bcf4672c9885819f4b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2714938266&rft_id=info:pmid/&rfr_iscdi=true