Loading…
Selecting an Optimal Faraday Cage To Minimize Noise in Electrochemical Experiments
The ubiquitous Faraday cage, an experimental component particularly essential for nanoelectrochemical measurements, is responsible for neutralizing noise introduced by electromagnetic interference (EMI). Faraday cage designs abound in the literature, often exhibiting varying thicknesses, mesh sizes,...
Saved in:
Published in: | Analytical chemistry (Washington) 2022-09, Vol.94 (35), p.11983-11989 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a353t-57eb69aac091f07b18c59a8a66c2b04de0f1ad2242c88bcf4672c9885819f4b73 |
---|---|
cites | cdi_FETCH-LOGICAL-a353t-57eb69aac091f07b18c59a8a66c2b04de0f1ad2242c88bcf4672c9885819f4b73 |
container_end_page | 11989 |
container_issue | 35 |
container_start_page | 11983 |
container_title | Analytical chemistry (Washington) |
container_volume | 94 |
creator | Glasscott, Matthew W. Brown, Eric W. Dorsey, Keirstin Laber, Charles H. Conley, Keith Ray, Jason D. Moores, Lee C. Netchaev, Anton |
description | The ubiquitous Faraday cage, an experimental component particularly essential for nanoelectrochemical measurements, is responsible for neutralizing noise introduced by electromagnetic interference (EMI). Faraday cage designs abound in the literature, often exhibiting varying thicknesses, mesh sizes, and base materials. The fact that the Faraday cage composition most often goes unreported underscores the fact that many electrochemical researchers assume a 100% EMI reduction for any given design. In this work, this assumption is challenged from a theoretical and empirical perspective by highlighting the physical principles producing the Faraday effect. A brief history of the Faraday cage and a simplified theoretical approach introduce fundamental considerations regarding optimal design properties. In practice, time-domain noise profiles and corresponding Fourier transform frequency domain information for custom-built Faraday cages reveal that maximally conductive cages provide more optimal EMI exclusion. |
doi_str_mv | 10.1021/acs.analchem.2c02347 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2705398939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705398939</sourcerecordid><originalsourceid>FETCH-LOGICAL-a353t-57eb69aac091f07b18c59a8a66c2b04de0f1ad2242c88bcf4672c9885819f4b73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQQIMoWKv_wEPAi5etk2Q_kqOUVoVqQet5mU2zNWW_TLZg_fVmqXrw4CmHeW_CPEIuGUwYcHaD2k-wwUq_mXrCNXARZ0dkxBIOUSolPyYjABARzwBOyZn3WwDGgKUj8vxiKqN722woNnTZ9bbGis7R4Rr3dIobQ1ctfbSNre2noU-t9Ybahs4Gy7XDj1YHY_bRGWdr0_T-nJyUWHlz8f2Oyet8tpreR4vl3cP0dhGhSEQfJZkpUoWoQbESsoJJnSiUmKaaFxCvDZQM15zHXEtZ6DJOM66VlIlkqoyLTIzJ9WFv59r3nfF9XluvTVVhY9qdz8O1iVBSCRXQqz_ott25UGygWKyE5GkaqPhAadd670yZd-EkdPucQT6EzkPo_Cd0_h06aHDQhunv3n-VL1MPg_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714938266</pqid></control><display><type>article</type><title>Selecting an Optimal Faraday Cage To Minimize Noise in Electrochemical Experiments</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Glasscott, Matthew W. ; Brown, Eric W. ; Dorsey, Keirstin ; Laber, Charles H. ; Conley, Keith ; Ray, Jason D. ; Moores, Lee C. ; Netchaev, Anton</creator><creatorcontrib>Glasscott, Matthew W. ; Brown, Eric W. ; Dorsey, Keirstin ; Laber, Charles H. ; Conley, Keith ; Ray, Jason D. ; Moores, Lee C. ; Netchaev, Anton</creatorcontrib><description>The ubiquitous Faraday cage, an experimental component particularly essential for nanoelectrochemical measurements, is responsible for neutralizing noise introduced by electromagnetic interference (EMI). Faraday cage designs abound in the literature, often exhibiting varying thicknesses, mesh sizes, and base materials. The fact that the Faraday cage composition most often goes unreported underscores the fact that many electrochemical researchers assume a 100% EMI reduction for any given design. In this work, this assumption is challenged from a theoretical and empirical perspective by highlighting the physical principles producing the Faraday effect. A brief history of the Faraday cage and a simplified theoretical approach introduce fundamental considerations regarding optimal design properties. In practice, time-domain noise profiles and corresponding Fourier transform frequency domain information for custom-built Faraday cages reveal that maximally conductive cages provide more optimal EMI exclusion.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c02347</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Analytical chemistry ; Cages ; Chemistry ; Electrochemistry ; Electromagnetic interference ; Faraday cage ; Faraday effect ; Fourier transforms ; Noise</subject><ispartof>Analytical chemistry (Washington), 2022-09, Vol.94 (35), p.11983-11989</ispartof><rights>Not subject to U.S. Copyright. Published 2022 by American Chemical Society</rights><rights>Copyright American Chemical Society Sep 6, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a353t-57eb69aac091f07b18c59a8a66c2b04de0f1ad2242c88bcf4672c9885819f4b73</citedby><cites>FETCH-LOGICAL-a353t-57eb69aac091f07b18c59a8a66c2b04de0f1ad2242c88bcf4672c9885819f4b73</cites><orcidid>0000-0001-5743-7738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Glasscott, Matthew W.</creatorcontrib><creatorcontrib>Brown, Eric W.</creatorcontrib><creatorcontrib>Dorsey, Keirstin</creatorcontrib><creatorcontrib>Laber, Charles H.</creatorcontrib><creatorcontrib>Conley, Keith</creatorcontrib><creatorcontrib>Ray, Jason D.</creatorcontrib><creatorcontrib>Moores, Lee C.</creatorcontrib><creatorcontrib>Netchaev, Anton</creatorcontrib><title>Selecting an Optimal Faraday Cage To Minimize Noise in Electrochemical Experiments</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The ubiquitous Faraday cage, an experimental component particularly essential for nanoelectrochemical measurements, is responsible for neutralizing noise introduced by electromagnetic interference (EMI). Faraday cage designs abound in the literature, often exhibiting varying thicknesses, mesh sizes, and base materials. The fact that the Faraday cage composition most often goes unreported underscores the fact that many electrochemical researchers assume a 100% EMI reduction for any given design. In this work, this assumption is challenged from a theoretical and empirical perspective by highlighting the physical principles producing the Faraday effect. A brief history of the Faraday cage and a simplified theoretical approach introduce fundamental considerations regarding optimal design properties. In practice, time-domain noise profiles and corresponding Fourier transform frequency domain information for custom-built Faraday cages reveal that maximally conductive cages provide more optimal EMI exclusion.</description><subject>Analytical chemistry</subject><subject>Cages</subject><subject>Chemistry</subject><subject>Electrochemistry</subject><subject>Electromagnetic interference</subject><subject>Faraday cage</subject><subject>Faraday effect</subject><subject>Fourier transforms</subject><subject>Noise</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQQIMoWKv_wEPAi5etk2Q_kqOUVoVqQet5mU2zNWW_TLZg_fVmqXrw4CmHeW_CPEIuGUwYcHaD2k-wwUq_mXrCNXARZ0dkxBIOUSolPyYjABARzwBOyZn3WwDGgKUj8vxiKqN722woNnTZ9bbGis7R4Rr3dIobQ1ctfbSNre2noU-t9Ybahs4Gy7XDj1YHY_bRGWdr0_T-nJyUWHlz8f2Oyet8tpreR4vl3cP0dhGhSEQfJZkpUoWoQbESsoJJnSiUmKaaFxCvDZQM15zHXEtZ6DJOM66VlIlkqoyLTIzJ9WFv59r3nfF9XluvTVVhY9qdz8O1iVBSCRXQqz_ott25UGygWKyE5GkaqPhAadd670yZd-EkdPucQT6EzkPo_Cd0_h06aHDQhunv3n-VL1MPg_A</recordid><startdate>20220906</startdate><enddate>20220906</enddate><creator>Glasscott, Matthew W.</creator><creator>Brown, Eric W.</creator><creator>Dorsey, Keirstin</creator><creator>Laber, Charles H.</creator><creator>Conley, Keith</creator><creator>Ray, Jason D.</creator><creator>Moores, Lee C.</creator><creator>Netchaev, Anton</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5743-7738</orcidid></search><sort><creationdate>20220906</creationdate><title>Selecting an Optimal Faraday Cage To Minimize Noise in Electrochemical Experiments</title><author>Glasscott, Matthew W. ; Brown, Eric W. ; Dorsey, Keirstin ; Laber, Charles H. ; Conley, Keith ; Ray, Jason D. ; Moores, Lee C. ; Netchaev, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a353t-57eb69aac091f07b18c59a8a66c2b04de0f1ad2242c88bcf4672c9885819f4b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical chemistry</topic><topic>Cages</topic><topic>Chemistry</topic><topic>Electrochemistry</topic><topic>Electromagnetic interference</topic><topic>Faraday cage</topic><topic>Faraday effect</topic><topic>Fourier transforms</topic><topic>Noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glasscott, Matthew W.</creatorcontrib><creatorcontrib>Brown, Eric W.</creatorcontrib><creatorcontrib>Dorsey, Keirstin</creatorcontrib><creatorcontrib>Laber, Charles H.</creatorcontrib><creatorcontrib>Conley, Keith</creatorcontrib><creatorcontrib>Ray, Jason D.</creatorcontrib><creatorcontrib>Moores, Lee C.</creatorcontrib><creatorcontrib>Netchaev, Anton</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glasscott, Matthew W.</au><au>Brown, Eric W.</au><au>Dorsey, Keirstin</au><au>Laber, Charles H.</au><au>Conley, Keith</au><au>Ray, Jason D.</au><au>Moores, Lee C.</au><au>Netchaev, Anton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selecting an Optimal Faraday Cage To Minimize Noise in Electrochemical Experiments</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-09-06</date><risdate>2022</risdate><volume>94</volume><issue>35</issue><spage>11983</spage><epage>11989</epage><pages>11983-11989</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>The ubiquitous Faraday cage, an experimental component particularly essential for nanoelectrochemical measurements, is responsible for neutralizing noise introduced by electromagnetic interference (EMI). Faraday cage designs abound in the literature, often exhibiting varying thicknesses, mesh sizes, and base materials. The fact that the Faraday cage composition most often goes unreported underscores the fact that many electrochemical researchers assume a 100% EMI reduction for any given design. In this work, this assumption is challenged from a theoretical and empirical perspective by highlighting the physical principles producing the Faraday effect. A brief history of the Faraday cage and a simplified theoretical approach introduce fundamental considerations regarding optimal design properties. In practice, time-domain noise profiles and corresponding Fourier transform frequency domain information for custom-built Faraday cages reveal that maximally conductive cages provide more optimal EMI exclusion.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.2c02347</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5743-7738</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2022-09, Vol.94 (35), p.11983-11989 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2705398939 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Analytical chemistry Cages Chemistry Electrochemistry Electromagnetic interference Faraday cage Faraday effect Fourier transforms Noise |
title | Selecting an Optimal Faraday Cage To Minimize Noise in Electrochemical Experiments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selecting%20an%20Optimal%20Faraday%20Cage%20To%20Minimize%20Noise%20in%20Electrochemical%20Experiments&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Glasscott,%20Matthew%20W.&rft.date=2022-09-06&rft.volume=94&rft.issue=35&rft.spage=11983&rft.epage=11989&rft.pages=11983-11989&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c02347&rft_dat=%3Cproquest_cross%3E2705398939%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a353t-57eb69aac091f07b18c59a8a66c2b04de0f1ad2242c88bcf4672c9885819f4b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2714938266&rft_id=info:pmid/&rfr_iscdi=true |