Loading…
An NN-based approach for tuning servocontrollers
Neural networks (NN) are used in this paper to tune PI controllers for unknown plants, which may be nonlinear or open-loop unstable. A simple algorithm, which requires only knowledge of the plant output response direction, is used for training an NN controller, by employing the error between the ref...
Saved in:
Published in: | Neural networks 1999-04, Vol.12 (3), p.513-518 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c452t-4dca34186af889fffb24fcc0a791eaf9243efa59872855492e6fce6c8f84586b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c452t-4dca34186af889fffb24fcc0a791eaf9243efa59872855492e6fce6c8f84586b3 |
container_end_page | 518 |
container_issue | 3 |
container_start_page | 513 |
container_title | Neural networks |
container_volume | 12 |
creator | Hemerly, Elder M. Nascimento, Cairo L. |
description | Neural networks (NN) are used in this paper to tune PI controllers for unknown plants, which may be nonlinear or open-loop unstable. A simple algorithm, which requires only knowledge of the plant output response direction, is used for training an NN controller, by employing the error between the reference and the plant output. Once this controller achieves good performance, its input–output behavior is approximated by a controller with PI structure, thereby enabling the computation of proportional and integral gains. These gains are familiar to process engineers and can be directly inserted into most existing softwares for process control in industry. Computer simulations on an unstable nonlinear plant and experimental results on a thermal plant are presented to illustrate the usefulness of the proposed approach. |
doi_str_mv | 10.1016/S0893-6080(98)00147-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27059927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608098001476</els_id><sourcerecordid>1859401653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-4dca34186af889fffb24fcc0a791eaf9243efa59872855492e6fce6c8f84586b3</originalsourceid><addsrcrecordid>eNqF0D1PwzAQgGELgWgp_ARQBoTKELAd2zlPqKr4kqoyALPlOmcISpNip5X496Qfgg0mL8-dTy8hp4xeMcrU9TMFnaWKAh1quKSUiTxVe6TPINcpz4Hvk_4P6ZGjGD8opQpEdkh6jCvFleZ9Qkd1Mp2mMxuxSOxiERrr3hPfhKRd1mX9lkQMq8Y1dRuaqsIQj8mBt1XEk907IK93ty_jh3TydP84Hk1SJyRvU1E4mwkGynoA7b2fceGdozbXDK3XXGTordSQc5BSaI7KO1QOPAgJapYNyMV2b3fS5xJja-ZldFhVtsZmGQ3PqdSa5x0c_gkZSC26YjLrqNxSF5oYA3qzCOXchi_DqFlXNZuqZp3MaDCbqkZ1c2e7L5azORa_U7uMHTjfARudrXywtSvjrwMNnIqO3WwZduFWJQYTXYm1w6IM6FpTNOU_l3wD4oWSdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859401653</pqid></control><display><type>article</type><title>An NN-based approach for tuning servocontrollers</title><source>ScienceDirect Journals</source><creator>Hemerly, Elder M. ; Nascimento, Cairo L.</creator><creatorcontrib>Hemerly, Elder M. ; Nascimento, Cairo L.</creatorcontrib><description>Neural networks (NN) are used in this paper to tune PI controllers for unknown plants, which may be nonlinear or open-loop unstable. A simple algorithm, which requires only knowledge of the plant output response direction, is used for training an NN controller, by employing the error between the reference and the plant output. Once this controller achieves good performance, its input–output behavior is approximated by a controller with PI structure, thereby enabling the computation of proportional and integral gains. These gains are familiar to process engineers and can be directly inserted into most existing softwares for process control in industry. Computer simulations on an unstable nonlinear plant and experimental results on a thermal plant are presented to illustrate the usefulness of the proposed approach.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/S0893-6080(98)00147-6</identifier><identifier>PMID: 12662692</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adaptative systems ; Adaptive control ; Applied sciences ; Artificial intelligence ; Backpropagation ; Computer science; control theory; systems ; Connectionism. Neural networks ; Control theory. Systems ; Digital control ; Exact sciences and technology ; Neural network ; PI controller ; Process control ; Process control. Computer integrated manufacturing</subject><ispartof>Neural networks, 1999-04, Vol.12 (3), p.513-518</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-4dca34186af889fffb24fcc0a791eaf9243efa59872855492e6fce6c8f84586b3</citedby><cites>FETCH-LOGICAL-c452t-4dca34186af889fffb24fcc0a791eaf9243efa59872855492e6fce6c8f84586b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1898204$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12662692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hemerly, Elder M.</creatorcontrib><creatorcontrib>Nascimento, Cairo L.</creatorcontrib><title>An NN-based approach for tuning servocontrollers</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Neural networks (NN) are used in this paper to tune PI controllers for unknown plants, which may be nonlinear or open-loop unstable. A simple algorithm, which requires only knowledge of the plant output response direction, is used for training an NN controller, by employing the error between the reference and the plant output. Once this controller achieves good performance, its input–output behavior is approximated by a controller with PI structure, thereby enabling the computation of proportional and integral gains. These gains are familiar to process engineers and can be directly inserted into most existing softwares for process control in industry. Computer simulations on an unstable nonlinear plant and experimental results on a thermal plant are presented to illustrate the usefulness of the proposed approach.</description><subject>Adaptative systems</subject><subject>Adaptive control</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Backpropagation</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Control theory. Systems</subject><subject>Digital control</subject><subject>Exact sciences and technology</subject><subject>Neural network</subject><subject>PI controller</subject><subject>Process control</subject><subject>Process control. Computer integrated manufacturing</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqF0D1PwzAQgGELgWgp_ARQBoTKELAd2zlPqKr4kqoyALPlOmcISpNip5X496Qfgg0mL8-dTy8hp4xeMcrU9TMFnaWKAh1quKSUiTxVe6TPINcpz4Hvk_4P6ZGjGD8opQpEdkh6jCvFleZ9Qkd1Mp2mMxuxSOxiERrr3hPfhKRd1mX9lkQMq8Y1dRuaqsIQj8mBt1XEk907IK93ty_jh3TydP84Hk1SJyRvU1E4mwkGynoA7b2fceGdozbXDK3XXGTordSQc5BSaI7KO1QOPAgJapYNyMV2b3fS5xJja-ZldFhVtsZmGQ3PqdSa5x0c_gkZSC26YjLrqNxSF5oYA3qzCOXchi_DqFlXNZuqZp3MaDCbqkZ1c2e7L5azORa_U7uMHTjfARudrXywtSvjrwMNnIqO3WwZduFWJQYTXYm1w6IM6FpTNOU_l3wD4oWSdg</recordid><startdate>19990401</startdate><enddate>19990401</enddate><creator>Hemerly, Elder M.</creator><creator>Nascimento, Cairo L.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19990401</creationdate><title>An NN-based approach for tuning servocontrollers</title><author>Hemerly, Elder M. ; Nascimento, Cairo L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-4dca34186af889fffb24fcc0a791eaf9243efa59872855492e6fce6c8f84586b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adaptative systems</topic><topic>Adaptive control</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Backpropagation</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Control theory. Systems</topic><topic>Digital control</topic><topic>Exact sciences and technology</topic><topic>Neural network</topic><topic>PI controller</topic><topic>Process control</topic><topic>Process control. Computer integrated manufacturing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hemerly, Elder M.</creatorcontrib><creatorcontrib>Nascimento, Cairo L.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hemerly, Elder M.</au><au>Nascimento, Cairo L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An NN-based approach for tuning servocontrollers</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>1999-04-01</date><risdate>1999</risdate><volume>12</volume><issue>3</issue><spage>513</spage><epage>518</epage><pages>513-518</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Neural networks (NN) are used in this paper to tune PI controllers for unknown plants, which may be nonlinear or open-loop unstable. A simple algorithm, which requires only knowledge of the plant output response direction, is used for training an NN controller, by employing the error between the reference and the plant output. Once this controller achieves good performance, its input–output behavior is approximated by a controller with PI structure, thereby enabling the computation of proportional and integral gains. These gains are familiar to process engineers and can be directly inserted into most existing softwares for process control in industry. Computer simulations on an unstable nonlinear plant and experimental results on a thermal plant are presented to illustrate the usefulness of the proposed approach.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>12662692</pmid><doi>10.1016/S0893-6080(98)00147-6</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 1999-04, Vol.12 (3), p.513-518 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_27059927 |
source | ScienceDirect Journals |
subjects | Adaptative systems Adaptive control Applied sciences Artificial intelligence Backpropagation Computer science control theory systems Connectionism. Neural networks Control theory. Systems Digital control Exact sciences and technology Neural network PI controller Process control Process control. Computer integrated manufacturing |
title | An NN-based approach for tuning servocontrollers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20NN-based%20approach%20for%20tuning%20servocontrollers&rft.jtitle=Neural%20networks&rft.au=Hemerly,%20Elder%20M.&rft.date=1999-04-01&rft.volume=12&rft.issue=3&rft.spage=513&rft.epage=518&rft.pages=513-518&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/S0893-6080(98)00147-6&rft_dat=%3Cproquest_cross%3E1859401653%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-4dca34186af889fffb24fcc0a791eaf9243efa59872855492e6fce6c8f84586b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1859401653&rft_id=info:pmid/12662692&rfr_iscdi=true |