Loading…

An NN-based approach for tuning servocontrollers

Neural networks (NN) are used in this paper to tune PI controllers for unknown plants, which may be nonlinear or open-loop unstable. A simple algorithm, which requires only knowledge of the plant output response direction, is used for training an NN controller, by employing the error between the ref...

Full description

Saved in:
Bibliographic Details
Published in:Neural networks 1999-04, Vol.12 (3), p.513-518
Main Authors: Hemerly, Elder M., Nascimento, Cairo L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-4dca34186af889fffb24fcc0a791eaf9243efa59872855492e6fce6c8f84586b3
cites cdi_FETCH-LOGICAL-c452t-4dca34186af889fffb24fcc0a791eaf9243efa59872855492e6fce6c8f84586b3
container_end_page 518
container_issue 3
container_start_page 513
container_title Neural networks
container_volume 12
creator Hemerly, Elder M.
Nascimento, Cairo L.
description Neural networks (NN) are used in this paper to tune PI controllers for unknown plants, which may be nonlinear or open-loop unstable. A simple algorithm, which requires only knowledge of the plant output response direction, is used for training an NN controller, by employing the error between the reference and the plant output. Once this controller achieves good performance, its input–output behavior is approximated by a controller with PI structure, thereby enabling the computation of proportional and integral gains. These gains are familiar to process engineers and can be directly inserted into most existing softwares for process control in industry. Computer simulations on an unstable nonlinear plant and experimental results on a thermal plant are presented to illustrate the usefulness of the proposed approach.
doi_str_mv 10.1016/S0893-6080(98)00147-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27059927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608098001476</els_id><sourcerecordid>1859401653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-4dca34186af889fffb24fcc0a791eaf9243efa59872855492e6fce6c8f84586b3</originalsourceid><addsrcrecordid>eNqF0D1PwzAQgGELgWgp_ARQBoTKELAd2zlPqKr4kqoyALPlOmcISpNip5X496Qfgg0mL8-dTy8hp4xeMcrU9TMFnaWKAh1quKSUiTxVe6TPINcpz4Hvk_4P6ZGjGD8opQpEdkh6jCvFleZ9Qkd1Mp2mMxuxSOxiERrr3hPfhKRd1mX9lkQMq8Y1dRuaqsIQj8mBt1XEk907IK93ty_jh3TydP84Hk1SJyRvU1E4mwkGynoA7b2fceGdozbXDK3XXGTordSQc5BSaI7KO1QOPAgJapYNyMV2b3fS5xJja-ZldFhVtsZmGQ3PqdSa5x0c_gkZSC26YjLrqNxSF5oYA3qzCOXchi_DqFlXNZuqZp3MaDCbqkZ1c2e7L5azORa_U7uMHTjfARudrXywtSvjrwMNnIqO3WwZduFWJQYTXYm1w6IM6FpTNOU_l3wD4oWSdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859401653</pqid></control><display><type>article</type><title>An NN-based approach for tuning servocontrollers</title><source>ScienceDirect Journals</source><creator>Hemerly, Elder M. ; Nascimento, Cairo L.</creator><creatorcontrib>Hemerly, Elder M. ; Nascimento, Cairo L.</creatorcontrib><description>Neural networks (NN) are used in this paper to tune PI controllers for unknown plants, which may be nonlinear or open-loop unstable. A simple algorithm, which requires only knowledge of the plant output response direction, is used for training an NN controller, by employing the error between the reference and the plant output. Once this controller achieves good performance, its input–output behavior is approximated by a controller with PI structure, thereby enabling the computation of proportional and integral gains. These gains are familiar to process engineers and can be directly inserted into most existing softwares for process control in industry. Computer simulations on an unstable nonlinear plant and experimental results on a thermal plant are presented to illustrate the usefulness of the proposed approach.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/S0893-6080(98)00147-6</identifier><identifier>PMID: 12662692</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adaptative systems ; Adaptive control ; Applied sciences ; Artificial intelligence ; Backpropagation ; Computer science; control theory; systems ; Connectionism. Neural networks ; Control theory. Systems ; Digital control ; Exact sciences and technology ; Neural network ; PI controller ; Process control ; Process control. Computer integrated manufacturing</subject><ispartof>Neural networks, 1999-04, Vol.12 (3), p.513-518</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-4dca34186af889fffb24fcc0a791eaf9243efa59872855492e6fce6c8f84586b3</citedby><cites>FETCH-LOGICAL-c452t-4dca34186af889fffb24fcc0a791eaf9243efa59872855492e6fce6c8f84586b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1898204$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12662692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hemerly, Elder M.</creatorcontrib><creatorcontrib>Nascimento, Cairo L.</creatorcontrib><title>An NN-based approach for tuning servocontrollers</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Neural networks (NN) are used in this paper to tune PI controllers for unknown plants, which may be nonlinear or open-loop unstable. A simple algorithm, which requires only knowledge of the plant output response direction, is used for training an NN controller, by employing the error between the reference and the plant output. Once this controller achieves good performance, its input–output behavior is approximated by a controller with PI structure, thereby enabling the computation of proportional and integral gains. These gains are familiar to process engineers and can be directly inserted into most existing softwares for process control in industry. Computer simulations on an unstable nonlinear plant and experimental results on a thermal plant are presented to illustrate the usefulness of the proposed approach.</description><subject>Adaptative systems</subject><subject>Adaptive control</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Backpropagation</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Control theory. Systems</subject><subject>Digital control</subject><subject>Exact sciences and technology</subject><subject>Neural network</subject><subject>PI controller</subject><subject>Process control</subject><subject>Process control. Computer integrated manufacturing</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqF0D1PwzAQgGELgWgp_ARQBoTKELAd2zlPqKr4kqoyALPlOmcISpNip5X496Qfgg0mL8-dTy8hp4xeMcrU9TMFnaWKAh1quKSUiTxVe6TPINcpz4Hvk_4P6ZGjGD8opQpEdkh6jCvFleZ9Qkd1Mp2mMxuxSOxiERrr3hPfhKRd1mX9lkQMq8Y1dRuaqsIQj8mBt1XEk907IK93ty_jh3TydP84Hk1SJyRvU1E4mwkGynoA7b2fceGdozbXDK3XXGTordSQc5BSaI7KO1QOPAgJapYNyMV2b3fS5xJja-ZldFhVtsZmGQ3PqdSa5x0c_gkZSC26YjLrqNxSF5oYA3qzCOXchi_DqFlXNZuqZp3MaDCbqkZ1c2e7L5azORa_U7uMHTjfARudrXywtSvjrwMNnIqO3WwZduFWJQYTXYm1w6IM6FpTNOU_l3wD4oWSdg</recordid><startdate>19990401</startdate><enddate>19990401</enddate><creator>Hemerly, Elder M.</creator><creator>Nascimento, Cairo L.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19990401</creationdate><title>An NN-based approach for tuning servocontrollers</title><author>Hemerly, Elder M. ; Nascimento, Cairo L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-4dca34186af889fffb24fcc0a791eaf9243efa59872855492e6fce6c8f84586b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adaptative systems</topic><topic>Adaptive control</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Backpropagation</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Control theory. Systems</topic><topic>Digital control</topic><topic>Exact sciences and technology</topic><topic>Neural network</topic><topic>PI controller</topic><topic>Process control</topic><topic>Process control. Computer integrated manufacturing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hemerly, Elder M.</creatorcontrib><creatorcontrib>Nascimento, Cairo L.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hemerly, Elder M.</au><au>Nascimento, Cairo L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An NN-based approach for tuning servocontrollers</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>1999-04-01</date><risdate>1999</risdate><volume>12</volume><issue>3</issue><spage>513</spage><epage>518</epage><pages>513-518</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Neural networks (NN) are used in this paper to tune PI controllers for unknown plants, which may be nonlinear or open-loop unstable. A simple algorithm, which requires only knowledge of the plant output response direction, is used for training an NN controller, by employing the error between the reference and the plant output. Once this controller achieves good performance, its input–output behavior is approximated by a controller with PI structure, thereby enabling the computation of proportional and integral gains. These gains are familiar to process engineers and can be directly inserted into most existing softwares for process control in industry. Computer simulations on an unstable nonlinear plant and experimental results on a thermal plant are presented to illustrate the usefulness of the proposed approach.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>12662692</pmid><doi>10.1016/S0893-6080(98)00147-6</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 1999-04, Vol.12 (3), p.513-518
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_27059927
source ScienceDirect Journals
subjects Adaptative systems
Adaptive control
Applied sciences
Artificial intelligence
Backpropagation
Computer science
control theory
systems
Connectionism. Neural networks
Control theory. Systems
Digital control
Exact sciences and technology
Neural network
PI controller
Process control
Process control. Computer integrated manufacturing
title An NN-based approach for tuning servocontrollers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20NN-based%20approach%20for%20tuning%20servocontrollers&rft.jtitle=Neural%20networks&rft.au=Hemerly,%20Elder%20M.&rft.date=1999-04-01&rft.volume=12&rft.issue=3&rft.spage=513&rft.epage=518&rft.pages=513-518&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/S0893-6080(98)00147-6&rft_dat=%3Cproquest_cross%3E1859401653%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-4dca34186af889fffb24fcc0a791eaf9243efa59872855492e6fce6c8f84586b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1859401653&rft_id=info:pmid/12662692&rfr_iscdi=true