Loading…
A Nanojunction pH Sensor within a Nanowire
pH sensors that are nanoscopic in all three dimensions are fabricated within a single gold nanowire. Fabrication involves the formation of a nanogap within the nanowire via electromigration, followed by electropolymerization of pH-responsive poly(aniline) (PANI) that fills the nanogap forming the n...
Saved in:
Published in: | Analytical chemistry (Washington) 2022-09, Vol.94 (35), p.12167-12175 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a302t-dc43ad5d75644f43c52a817b97a91129556f782de926f7139012faebc4a390823 |
container_end_page | 12175 |
container_issue | 35 |
container_start_page | 12167 |
container_title | Analytical chemistry (Washington) |
container_volume | 94 |
creator | Drago, Nicholas P. Choi, Eric J. Shin, Jihoon Kim, Dong-Hwan Penner, Reginald M. |
description | pH sensors that are nanoscopic in all three dimensions are fabricated within a single gold nanowire. Fabrication involves the formation of a nanogap within the nanowire via electromigration, followed by electropolymerization of pH-responsive poly(aniline) (PANI) that fills the nanogap forming the nanojunction. All fabrication steps are performed using wet chemical methods that do not require a clean room. The measured electrical impedance of the PANI nanojunction is correlated with pH from 2.0 to 9.0 with a response time of 30 s. Larger, micrometer-scale PANI junctions exhibit a slower response. The measured pH is weakly influenced by the salt concentration of the contacting aqueous solution. An impedance measurement at two frequencies (300 kHz and 1.0 Hz) enables estimation of the salt concentration and correction of the measured pH value, preserving the accuracy of the pH measurement across the entire calibration curve for salt concentrations up to 1.0 M. The result is a nanoscopic pH sensor with pH sensing performance approaching that of a conventional, macroscopic pH glass-membrane electrode. |
doi_str_mv | 10.1021/acs.analchem.2c02606 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2706181940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706181940</sourcerecordid><originalsourceid>FETCH-LOGICAL-a302t-dc43ad5d75644f43c52a817b97a91129556f782de926f7139012faebc4a390823</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKtv4GHBiwhbZ5JsdnMsRa0gelDPIc1m6ZZtUpNdim9vaqsHD57mh_n-gfkIuUSYIFC81SZOtNOdWdr1hBqgAsQRGWFBIRdVRY_JCABYTkuAU3IW4woAEVCMyM00e9bOrwZn-ta7bDPPXq2LPmTbtl-2LtPf-20b7Dk5aXQX7cVhjsn7_d3bbJ4_vTw8zqZPuWZA-7w2nOm6qMtCcN5wZgqqKywXstQSkcqiEE1Z0dpKmgIyCUgbbReG65Qrysbken93E_zHYGOv1m00tuu0s36IKn0hsELJIaFXf9CVH0IysaOQS04RWaL4njLBxxhsozahXevwqRDUTqBKAtWPQHUQmGqwr-22v3f_rXwByoF0IA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714942113</pqid></control><display><type>article</type><title>A Nanojunction pH Sensor within a Nanowire</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Drago, Nicholas P. ; Choi, Eric J. ; Shin, Jihoon ; Kim, Dong-Hwan ; Penner, Reginald M.</creator><creatorcontrib>Drago, Nicholas P. ; Choi, Eric J. ; Shin, Jihoon ; Kim, Dong-Hwan ; Penner, Reginald M.</creatorcontrib><description>pH sensors that are nanoscopic in all three dimensions are fabricated within a single gold nanowire. Fabrication involves the formation of a nanogap within the nanowire via electromigration, followed by electropolymerization of pH-responsive poly(aniline) (PANI) that fills the nanogap forming the nanojunction. All fabrication steps are performed using wet chemical methods that do not require a clean room. The measured electrical impedance of the PANI nanojunction is correlated with pH from 2.0 to 9.0 with a response time of 30 s. Larger, micrometer-scale PANI junctions exhibit a slower response. The measured pH is weakly influenced by the salt concentration of the contacting aqueous solution. An impedance measurement at two frequencies (300 kHz and 1.0 Hz) enables estimation of the salt concentration and correction of the measured pH value, preserving the accuracy of the pH measurement across the entire calibration curve for salt concentrations up to 1.0 M. The result is a nanoscopic pH sensor with pH sensing performance approaching that of a conventional, macroscopic pH glass-membrane electrode.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c02606</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Aniline ; Aqueous solutions ; Calibration ; Chemistry ; Cleanrooms ; Electrical impedance ; Electrical junctions ; Electrodes ; Electromigration ; Fabrication ; Impedance ; Impedance measurement ; Nanotechnology ; Nanowires ; pH effects ; pH sensors ; Polyanilines ; Polymerization ; Response time ; Salts</subject><ispartof>Analytical chemistry (Washington), 2022-09, Vol.94 (35), p.12167-12175</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 6, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a302t-dc43ad5d75644f43c52a817b97a91129556f782de926f7139012faebc4a390823</cites><orcidid>0000-0003-3287-1284 ; 0000-0003-2831-3028 ; 0000-0002-3790-552X ; 0000-0002-2753-0955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Drago, Nicholas P.</creatorcontrib><creatorcontrib>Choi, Eric J.</creatorcontrib><creatorcontrib>Shin, Jihoon</creatorcontrib><creatorcontrib>Kim, Dong-Hwan</creatorcontrib><creatorcontrib>Penner, Reginald M.</creatorcontrib><title>A Nanojunction pH Sensor within a Nanowire</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>pH sensors that are nanoscopic in all three dimensions are fabricated within a single gold nanowire. Fabrication involves the formation of a nanogap within the nanowire via electromigration, followed by electropolymerization of pH-responsive poly(aniline) (PANI) that fills the nanogap forming the nanojunction. All fabrication steps are performed using wet chemical methods that do not require a clean room. The measured electrical impedance of the PANI nanojunction is correlated with pH from 2.0 to 9.0 with a response time of 30 s. Larger, micrometer-scale PANI junctions exhibit a slower response. The measured pH is weakly influenced by the salt concentration of the contacting aqueous solution. An impedance measurement at two frequencies (300 kHz and 1.0 Hz) enables estimation of the salt concentration and correction of the measured pH value, preserving the accuracy of the pH measurement across the entire calibration curve for salt concentrations up to 1.0 M. The result is a nanoscopic pH sensor with pH sensing performance approaching that of a conventional, macroscopic pH glass-membrane electrode.</description><subject>Aniline</subject><subject>Aqueous solutions</subject><subject>Calibration</subject><subject>Chemistry</subject><subject>Cleanrooms</subject><subject>Electrical impedance</subject><subject>Electrical junctions</subject><subject>Electrodes</subject><subject>Electromigration</subject><subject>Fabrication</subject><subject>Impedance</subject><subject>Impedance measurement</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>pH effects</subject><subject>pH sensors</subject><subject>Polyanilines</subject><subject>Polymerization</subject><subject>Response time</subject><subject>Salts</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKtv4GHBiwhbZ5JsdnMsRa0gelDPIc1m6ZZtUpNdim9vaqsHD57mh_n-gfkIuUSYIFC81SZOtNOdWdr1hBqgAsQRGWFBIRdVRY_JCABYTkuAU3IW4woAEVCMyM00e9bOrwZn-ta7bDPPXq2LPmTbtl-2LtPf-20b7Dk5aXQX7cVhjsn7_d3bbJ4_vTw8zqZPuWZA-7w2nOm6qMtCcN5wZgqqKywXstQSkcqiEE1Z0dpKmgIyCUgbbReG65Qrysbken93E_zHYGOv1m00tuu0s36IKn0hsELJIaFXf9CVH0IysaOQS04RWaL4njLBxxhsozahXevwqRDUTqBKAtWPQHUQmGqwr-22v3f_rXwByoF0IA</recordid><startdate>20220906</startdate><enddate>20220906</enddate><creator>Drago, Nicholas P.</creator><creator>Choi, Eric J.</creator><creator>Shin, Jihoon</creator><creator>Kim, Dong-Hwan</creator><creator>Penner, Reginald M.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3287-1284</orcidid><orcidid>https://orcid.org/0000-0003-2831-3028</orcidid><orcidid>https://orcid.org/0000-0002-3790-552X</orcidid><orcidid>https://orcid.org/0000-0002-2753-0955</orcidid></search><sort><creationdate>20220906</creationdate><title>A Nanojunction pH Sensor within a Nanowire</title><author>Drago, Nicholas P. ; Choi, Eric J. ; Shin, Jihoon ; Kim, Dong-Hwan ; Penner, Reginald M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a302t-dc43ad5d75644f43c52a817b97a91129556f782de926f7139012faebc4a390823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aniline</topic><topic>Aqueous solutions</topic><topic>Calibration</topic><topic>Chemistry</topic><topic>Cleanrooms</topic><topic>Electrical impedance</topic><topic>Electrical junctions</topic><topic>Electrodes</topic><topic>Electromigration</topic><topic>Fabrication</topic><topic>Impedance</topic><topic>Impedance measurement</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>pH effects</topic><topic>pH sensors</topic><topic>Polyanilines</topic><topic>Polymerization</topic><topic>Response time</topic><topic>Salts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drago, Nicholas P.</creatorcontrib><creatorcontrib>Choi, Eric J.</creatorcontrib><creatorcontrib>Shin, Jihoon</creatorcontrib><creatorcontrib>Kim, Dong-Hwan</creatorcontrib><creatorcontrib>Penner, Reginald M.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drago, Nicholas P.</au><au>Choi, Eric J.</au><au>Shin, Jihoon</au><au>Kim, Dong-Hwan</au><au>Penner, Reginald M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Nanojunction pH Sensor within a Nanowire</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-09-06</date><risdate>2022</risdate><volume>94</volume><issue>35</issue><spage>12167</spage><epage>12175</epage><pages>12167-12175</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>pH sensors that are nanoscopic in all three dimensions are fabricated within a single gold nanowire. Fabrication involves the formation of a nanogap within the nanowire via electromigration, followed by electropolymerization of pH-responsive poly(aniline) (PANI) that fills the nanogap forming the nanojunction. All fabrication steps are performed using wet chemical methods that do not require a clean room. The measured electrical impedance of the PANI nanojunction is correlated with pH from 2.0 to 9.0 with a response time of 30 s. Larger, micrometer-scale PANI junctions exhibit a slower response. The measured pH is weakly influenced by the salt concentration of the contacting aqueous solution. An impedance measurement at two frequencies (300 kHz and 1.0 Hz) enables estimation of the salt concentration and correction of the measured pH value, preserving the accuracy of the pH measurement across the entire calibration curve for salt concentrations up to 1.0 M. The result is a nanoscopic pH sensor with pH sensing performance approaching that of a conventional, macroscopic pH glass-membrane electrode.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.2c02606</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3287-1284</orcidid><orcidid>https://orcid.org/0000-0003-2831-3028</orcidid><orcidid>https://orcid.org/0000-0002-3790-552X</orcidid><orcidid>https://orcid.org/0000-0002-2753-0955</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2022-09, Vol.94 (35), p.12167-12175 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2706181940 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Aniline Aqueous solutions Calibration Chemistry Cleanrooms Electrical impedance Electrical junctions Electrodes Electromigration Fabrication Impedance Impedance measurement Nanotechnology Nanowires pH effects pH sensors Polyanilines Polymerization Response time Salts |
title | A Nanojunction pH Sensor within a Nanowire |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Nanojunction%20pH%20Sensor%20within%20a%20Nanowire&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Drago,%20Nicholas%20P.&rft.date=2022-09-06&rft.volume=94&rft.issue=35&rft.spage=12167&rft.epage=12175&rft.pages=12167-12175&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c02606&rft_dat=%3Cproquest_cross%3E2706181940%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a302t-dc43ad5d75644f43c52a817b97a91129556f782de926f7139012faebc4a390823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2714942113&rft_id=info:pmid/&rfr_iscdi=true |