Loading…

A Nanojunction pH Sensor within a Nanowire

pH sensors that are nanoscopic in all three dimensions are fabricated within a single gold nanowire. Fabrication involves the formation of a nanogap within the nanowire via electromigration, followed by electropolymerization of pH-responsive poly­(aniline) (PANI) that fills the nanogap forming the n...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2022-09, Vol.94 (35), p.12167-12175
Main Authors: Drago, Nicholas P., Choi, Eric J., Shin, Jihoon, Kim, Dong-Hwan, Penner, Reginald M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a302t-dc43ad5d75644f43c52a817b97a91129556f782de926f7139012faebc4a390823
container_end_page 12175
container_issue 35
container_start_page 12167
container_title Analytical chemistry (Washington)
container_volume 94
creator Drago, Nicholas P.
Choi, Eric J.
Shin, Jihoon
Kim, Dong-Hwan
Penner, Reginald M.
description pH sensors that are nanoscopic in all three dimensions are fabricated within a single gold nanowire. Fabrication involves the formation of a nanogap within the nanowire via electromigration, followed by electropolymerization of pH-responsive poly­(aniline) (PANI) that fills the nanogap forming the nanojunction. All fabrication steps are performed using wet chemical methods that do not require a clean room. The measured electrical impedance of the PANI nanojunction is correlated with pH from 2.0 to 9.0 with a response time of 30 s. Larger, micrometer-scale PANI junctions exhibit a slower response. The measured pH is weakly influenced by the salt concentration of the contacting aqueous solution. An impedance measurement at two frequencies (300 kHz and 1.0 Hz) enables estimation of the salt concentration and correction of the measured pH value, preserving the accuracy of the pH measurement across the entire calibration curve for salt concentrations up to 1.0 M. The result is a nanoscopic pH sensor with pH sensing performance approaching that of a conventional, macroscopic pH glass-membrane electrode.
doi_str_mv 10.1021/acs.analchem.2c02606
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2706181940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706181940</sourcerecordid><originalsourceid>FETCH-LOGICAL-a302t-dc43ad5d75644f43c52a817b97a91129556f782de926f7139012faebc4a390823</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKtv4GHBiwhbZ5JsdnMsRa0gelDPIc1m6ZZtUpNdim9vaqsHD57mh_n-gfkIuUSYIFC81SZOtNOdWdr1hBqgAsQRGWFBIRdVRY_JCABYTkuAU3IW4woAEVCMyM00e9bOrwZn-ta7bDPPXq2LPmTbtl-2LtPf-20b7Dk5aXQX7cVhjsn7_d3bbJ4_vTw8zqZPuWZA-7w2nOm6qMtCcN5wZgqqKywXstQSkcqiEE1Z0dpKmgIyCUgbbReG65Qrysbken93E_zHYGOv1m00tuu0s36IKn0hsELJIaFXf9CVH0IysaOQS04RWaL4njLBxxhsozahXevwqRDUTqBKAtWPQHUQmGqwr-22v3f_rXwByoF0IA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714942113</pqid></control><display><type>article</type><title>A Nanojunction pH Sensor within a Nanowire</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Drago, Nicholas P. ; Choi, Eric J. ; Shin, Jihoon ; Kim, Dong-Hwan ; Penner, Reginald M.</creator><creatorcontrib>Drago, Nicholas P. ; Choi, Eric J. ; Shin, Jihoon ; Kim, Dong-Hwan ; Penner, Reginald M.</creatorcontrib><description>pH sensors that are nanoscopic in all three dimensions are fabricated within a single gold nanowire. Fabrication involves the formation of a nanogap within the nanowire via electromigration, followed by electropolymerization of pH-responsive poly­(aniline) (PANI) that fills the nanogap forming the nanojunction. All fabrication steps are performed using wet chemical methods that do not require a clean room. The measured electrical impedance of the PANI nanojunction is correlated with pH from 2.0 to 9.0 with a response time of 30 s. Larger, micrometer-scale PANI junctions exhibit a slower response. The measured pH is weakly influenced by the salt concentration of the contacting aqueous solution. An impedance measurement at two frequencies (300 kHz and 1.0 Hz) enables estimation of the salt concentration and correction of the measured pH value, preserving the accuracy of the pH measurement across the entire calibration curve for salt concentrations up to 1.0 M. The result is a nanoscopic pH sensor with pH sensing performance approaching that of a conventional, macroscopic pH glass-membrane electrode.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c02606</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Aniline ; Aqueous solutions ; Calibration ; Chemistry ; Cleanrooms ; Electrical impedance ; Electrical junctions ; Electrodes ; Electromigration ; Fabrication ; Impedance ; Impedance measurement ; Nanotechnology ; Nanowires ; pH effects ; pH sensors ; Polyanilines ; Polymerization ; Response time ; Salts</subject><ispartof>Analytical chemistry (Washington), 2022-09, Vol.94 (35), p.12167-12175</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 6, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a302t-dc43ad5d75644f43c52a817b97a91129556f782de926f7139012faebc4a390823</cites><orcidid>0000-0003-3287-1284 ; 0000-0003-2831-3028 ; 0000-0002-3790-552X ; 0000-0002-2753-0955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Drago, Nicholas P.</creatorcontrib><creatorcontrib>Choi, Eric J.</creatorcontrib><creatorcontrib>Shin, Jihoon</creatorcontrib><creatorcontrib>Kim, Dong-Hwan</creatorcontrib><creatorcontrib>Penner, Reginald M.</creatorcontrib><title>A Nanojunction pH Sensor within a Nanowire</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>pH sensors that are nanoscopic in all three dimensions are fabricated within a single gold nanowire. Fabrication involves the formation of a nanogap within the nanowire via electromigration, followed by electropolymerization of pH-responsive poly­(aniline) (PANI) that fills the nanogap forming the nanojunction. All fabrication steps are performed using wet chemical methods that do not require a clean room. The measured electrical impedance of the PANI nanojunction is correlated with pH from 2.0 to 9.0 with a response time of 30 s. Larger, micrometer-scale PANI junctions exhibit a slower response. The measured pH is weakly influenced by the salt concentration of the contacting aqueous solution. An impedance measurement at two frequencies (300 kHz and 1.0 Hz) enables estimation of the salt concentration and correction of the measured pH value, preserving the accuracy of the pH measurement across the entire calibration curve for salt concentrations up to 1.0 M. The result is a nanoscopic pH sensor with pH sensing performance approaching that of a conventional, macroscopic pH glass-membrane electrode.</description><subject>Aniline</subject><subject>Aqueous solutions</subject><subject>Calibration</subject><subject>Chemistry</subject><subject>Cleanrooms</subject><subject>Electrical impedance</subject><subject>Electrical junctions</subject><subject>Electrodes</subject><subject>Electromigration</subject><subject>Fabrication</subject><subject>Impedance</subject><subject>Impedance measurement</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>pH effects</subject><subject>pH sensors</subject><subject>Polyanilines</subject><subject>Polymerization</subject><subject>Response time</subject><subject>Salts</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKtv4GHBiwhbZ5JsdnMsRa0gelDPIc1m6ZZtUpNdim9vaqsHD57mh_n-gfkIuUSYIFC81SZOtNOdWdr1hBqgAsQRGWFBIRdVRY_JCABYTkuAU3IW4woAEVCMyM00e9bOrwZn-ta7bDPPXq2LPmTbtl-2LtPf-20b7Dk5aXQX7cVhjsn7_d3bbJ4_vTw8zqZPuWZA-7w2nOm6qMtCcN5wZgqqKywXstQSkcqiEE1Z0dpKmgIyCUgbbReG65Qrysbken93E_zHYGOv1m00tuu0s36IKn0hsELJIaFXf9CVH0IysaOQS04RWaL4njLBxxhsozahXevwqRDUTqBKAtWPQHUQmGqwr-22v3f_rXwByoF0IA</recordid><startdate>20220906</startdate><enddate>20220906</enddate><creator>Drago, Nicholas P.</creator><creator>Choi, Eric J.</creator><creator>Shin, Jihoon</creator><creator>Kim, Dong-Hwan</creator><creator>Penner, Reginald M.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3287-1284</orcidid><orcidid>https://orcid.org/0000-0003-2831-3028</orcidid><orcidid>https://orcid.org/0000-0002-3790-552X</orcidid><orcidid>https://orcid.org/0000-0002-2753-0955</orcidid></search><sort><creationdate>20220906</creationdate><title>A Nanojunction pH Sensor within a Nanowire</title><author>Drago, Nicholas P. ; Choi, Eric J. ; Shin, Jihoon ; Kim, Dong-Hwan ; Penner, Reginald M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a302t-dc43ad5d75644f43c52a817b97a91129556f782de926f7139012faebc4a390823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aniline</topic><topic>Aqueous solutions</topic><topic>Calibration</topic><topic>Chemistry</topic><topic>Cleanrooms</topic><topic>Electrical impedance</topic><topic>Electrical junctions</topic><topic>Electrodes</topic><topic>Electromigration</topic><topic>Fabrication</topic><topic>Impedance</topic><topic>Impedance measurement</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>pH effects</topic><topic>pH sensors</topic><topic>Polyanilines</topic><topic>Polymerization</topic><topic>Response time</topic><topic>Salts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drago, Nicholas P.</creatorcontrib><creatorcontrib>Choi, Eric J.</creatorcontrib><creatorcontrib>Shin, Jihoon</creatorcontrib><creatorcontrib>Kim, Dong-Hwan</creatorcontrib><creatorcontrib>Penner, Reginald M.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drago, Nicholas P.</au><au>Choi, Eric J.</au><au>Shin, Jihoon</au><au>Kim, Dong-Hwan</au><au>Penner, Reginald M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Nanojunction pH Sensor within a Nanowire</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-09-06</date><risdate>2022</risdate><volume>94</volume><issue>35</issue><spage>12167</spage><epage>12175</epage><pages>12167-12175</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>pH sensors that are nanoscopic in all three dimensions are fabricated within a single gold nanowire. Fabrication involves the formation of a nanogap within the nanowire via electromigration, followed by electropolymerization of pH-responsive poly­(aniline) (PANI) that fills the nanogap forming the nanojunction. All fabrication steps are performed using wet chemical methods that do not require a clean room. The measured electrical impedance of the PANI nanojunction is correlated with pH from 2.0 to 9.0 with a response time of 30 s. Larger, micrometer-scale PANI junctions exhibit a slower response. The measured pH is weakly influenced by the salt concentration of the contacting aqueous solution. An impedance measurement at two frequencies (300 kHz and 1.0 Hz) enables estimation of the salt concentration and correction of the measured pH value, preserving the accuracy of the pH measurement across the entire calibration curve for salt concentrations up to 1.0 M. The result is a nanoscopic pH sensor with pH sensing performance approaching that of a conventional, macroscopic pH glass-membrane electrode.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.2c02606</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3287-1284</orcidid><orcidid>https://orcid.org/0000-0003-2831-3028</orcidid><orcidid>https://orcid.org/0000-0002-3790-552X</orcidid><orcidid>https://orcid.org/0000-0002-2753-0955</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2022-09, Vol.94 (35), p.12167-12175
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2706181940
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Aniline
Aqueous solutions
Calibration
Chemistry
Cleanrooms
Electrical impedance
Electrical junctions
Electrodes
Electromigration
Fabrication
Impedance
Impedance measurement
Nanotechnology
Nanowires
pH effects
pH sensors
Polyanilines
Polymerization
Response time
Salts
title A Nanojunction pH Sensor within a Nanowire
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Nanojunction%20pH%20Sensor%20within%20a%20Nanowire&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Drago,%20Nicholas%20P.&rft.date=2022-09-06&rft.volume=94&rft.issue=35&rft.spage=12167&rft.epage=12175&rft.pages=12167-12175&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c02606&rft_dat=%3Cproquest_cross%3E2706181940%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a302t-dc43ad5d75644f43c52a817b97a91129556f782de926f7139012faebc4a390823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2714942113&rft_id=info:pmid/&rfr_iscdi=true