Loading…

Barriers to artificial intelligence implementation in radiology practice: What the radiologist needs to know

Artificial Intelligence has the potential to disrupt the way clinical radiology is practiced globally. However, there are barriers that radiologists should be aware of prior to implementing Artificial Intelligence in daily practice. Barriers include regulatory compliance, ethical issues, data privac...

Full description

Saved in:
Bibliographic Details
Published in:Radiología (English ed.) 2022-07, Vol.64 (4), p.324-332
Main Authors: Nair, A.V., Ramanathan, S., Sathiadoss, P., Jajodia, A., Blair Macdonald, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Artificial Intelligence has the potential to disrupt the way clinical radiology is practiced globally. However, there are barriers that radiologists should be aware of prior to implementing Artificial Intelligence in daily practice. Barriers include regulatory compliance, ethical issues, data privacy, cybersecurity, AI training bias, and safe integration of AI into routine practice. In this article, we summarize the issues and the impact on clinical radiology. La inteligencia artificial (IA) ofrece la posibilidad de alterar la práctica de la radiología clínica en todo el mundo. Sin embargo, existen barreras que los radiólogos deben conocer antes de aplicar la inteligencia artificial en la práctica diaria. Las barreras incluyen cuestiones de cumplimiento de la reglamentación, cuestiones éticas, aspectos relacionados con la privacidad de los datos y la ciberseguridad, el sesgo de aprendizaje automático y la integración segura de la IA en la práctica habitual. En este artículo, resumimos estas cuestiones y su repercusión en la radiología clínica.
ISSN:2173-5107
2173-5107
DOI:10.1016/j.rxeng.2022.04.001