Loading…
Control of Sound Radiation of an Active Constrained Layer Damping Plate/Cavity System Using the Structural Intensity Approach
Considerable attention has been devoted to actively and passively controlling the sound radiation from vibrating plates into closed cavities. With the advent of smart materials, extensive effort has been exerted to control the vibration and sound radiation from flexible plates using smart sensors/ac...
Saved in:
Published in: | Journal of vibration and control 2002-09, Vol.8 (6), p.903-918 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Considerable attention has been devoted to actively and passively controlling the sound radiation from vibrating plates into closed cavities. With the advent of smart materials, extensive effort has been exerted to control the vibration and sound radiation from flexible plates using smart sensors/actuators. The Active Constrained Layer Damping (ACLD) treatment has been used successfully for controlling the vibration of various flexible structures. The treatment provides an effective means for augmenting the simplicity and reliability of passive damping with the low weight and high efficiency of active controls to attain high damping characteristics over broad frequency bands. This study investigates a numerically simulated example consisting of an ACLD treated plate/acoustic cavity system excited by a point harmonic force. In this study, an ACLD treated plate/acoustic cavity coupled finite element model is utilized to calculate the structural intensity and sound pressure radiated by the vibrating plates. In the passive control, the optimum placement of ACLD patches is determined by the structural intensity of ACLD treated plates and compared to the results obtained by using the strain energy approach. The influence on the structural intensity of the plate due to the damping treatment is investigated. |
---|---|
ISSN: | 1077-5463 1741-2986 |
DOI: | 10.1177/1077546029307 |